Fourier series expansion of stochastic measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 389-401

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider processes of the form $\mu(t)=\mu((0,t])$, where $\mu$ is a $\sigma$-additive in probability stochastic set function. Convergence of a random Fourier series to $\mu(t)$ is proved, and the approximation of integrals with respect to $\mu$ using Fejèr sums is obtained. For this approximation, we prove the convergence of solutions of the heat equation driven by $\mu$.
Keywords: stochastic measure, random Fourier series, stochastic integral, stochastic heat equation, mild solution.
@article{TVP_2018_63_2_a7,
     author = {V. M. Radchenko},
     title = {Fourier series expansion of stochastic measures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {389--401},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a7/}
}
TY  - JOUR
AU  - V. M. Radchenko
TI  - Fourier series expansion of stochastic measures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 389
EP  - 401
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a7/
LA  - ru
ID  - TVP_2018_63_2_a7
ER  - 
%0 Journal Article
%A V. M. Radchenko
%T Fourier series expansion of stochastic measures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 389-401
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a7/
%G ru
%F TVP_2018_63_2_a7
V. M. Radchenko. Fourier series expansion of stochastic measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 389-401. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a7/