Goodness-of-fit tests based on sup-functionals of weighted empirical processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 358-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A large class of goodness-of-fit test statistics based on sup-functionals of weighted empirical processes is proposed and studied. The weight functions employed are the Erdős–Feller–Kolmogorov–Petrovski upper-class functions of a Brownian bridge. Based on the result of M. Csörgő, S. Csörgő, L. Horváth, and D. Mason on this type of test statistics, we provide the asymptotic null distribution theory for the class of tests and present an algorithm for tabulating the limit distribution functions under the null hypothesis. A new family of nonparametric confidence bands is constructed for the true distribution function and is found to perform very well. The results obtained, involving a new result on the convergence in distribution of the higher criticism statistic, as introduced by D. Donoho and J. Jin, demonstrate the advantage of our approach over a common approach that utilizes a family of regularly varying weight functions. Furthermore, we show that, in various subtle problems of detecting sparse heterogeneous mixtures, the proposed test statistics achieve the detection boundary found by Yu. I. Ingster and, when distinguishing between the null and alternative hypotheses, perform optimally adaptively to unknown sparsity and size of the non-null effects.
Keywords: goodness-of-fit, weighted empirical processes, confidence bands, sparse heterogeneous mixtures.
Mots-clés : multiple comparisons
@article{TVP_2018_63_2_a6,
     author = {N. Stepanova and T. Pavlenko},
     title = {Goodness-of-fit tests based on sup-functionals of weighted empirical processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {358--388},
     year = {2018},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a6/}
}
TY  - JOUR
AU  - N. Stepanova
AU  - T. Pavlenko
TI  - Goodness-of-fit tests based on sup-functionals of weighted empirical processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 358
EP  - 388
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a6/
LA  - en
ID  - TVP_2018_63_2_a6
ER  - 
%0 Journal Article
%A N. Stepanova
%A T. Pavlenko
%T Goodness-of-fit tests based on sup-functionals of weighted empirical processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 358-388
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a6/
%G en
%F TVP_2018_63_2_a6
N. Stepanova; T. Pavlenko. Goodness-of-fit tests based on sup-functionals of weighted empirical processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 358-388. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a6/

[1] T. W. Anderson, D. A. Darling, “Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes”, Ann. Math. Statist., 23:2 (1952), 193–212 | DOI | MR | Zbl

[2] P. J. Bickel, “Edgeworth expansions in nonparametric statistics”, Ann. Statist., 2 (1974), 1–20 | DOI | MR | Zbl

[3] A. A. Borovkov, N. M. Sycheva, “On asymptotically optimal non-parametric tests”, Theory Probab. Appl., 13:3 (1968), 359–393 | DOI | MR | Zbl

[4] T. T. Cai, X. J. Jeng, J. Jin, “Optimal detection of heterogeneous and heteroscedastic mixtures”, J. R. Stat. Soc. Ser. B Stat. Methodol., 73:5 (2011), 629–662 | DOI | MR | Zbl

[5] D. M. Čibisov, “Some theorems on the limiting behavior of empirical distribution functions”, Select. Transl. Math. Statist. and Probability, 6, Amer. Math. Soc., Providence, R.I., 1966, 147–156 | MR | Zbl

[6] M. Csörgő, S. Csörgő, L. Horváth, D. Mason, “Weighted empirical and quantile processes”, Ann. Probab., 14:1 (1986), 31–85 | DOI | MR | Zbl

[7] M. Csörgő, L. Horváth, “20 nonparametric methods for changepoint problems”, Quality control and reliability, Handbook of Statist., 7, North-Holland Publishing Co., Amsterdam, 1988, 403–425 | DOI | MR | Zbl

[8] M. Csörgő, L. Horváth, Weighted approximations in probability and statistics, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Ltd., Chichester, 1993, xvi+442 pp. | MR | Zbl

[9] M. Csörgő, L. Horváth, Limit theorems in change-point analysis, Wiley Ser. Probab. Stat., John Wiley Sons, Ltd., Chichester, 1997, xvi+414 pp. | MR | Zbl

[10] M. Csörgő, P. Révész, Strong approximations in probability and statistics, Academic Press, Inc., New York–London, 1981, 284 pp. | MR | Zbl

[11] D. A. Darling, P. Erdős, “A limit theorem for the maximum of normalized sums of independent random variables”, Duke Math. J., 23 (1956), 143–155 | DOI | MR | Zbl

[12] A. DasGupta, Asymptotic theory of statistics and probability, Springer Texts Statist., Springer, New York, 2008, xxviii+722 pp. | DOI | MR | Zbl

[13] D. Donoho, J. Jin, “Higher criticism for detecting sparse heterogeneous mixtures”, Ann. Statist., 32:3 (2004), 962–994 | DOI | MR | Zbl

[14] D. Donoho, J. Jin, “Feature selection by higher criticism thresholding achieves the optimal phase diagram”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367:1906 (2009), 4449–4470 | DOI | MR | Zbl

[15] B. J. Eastwood, V. R. Eastwood, “Tabulating weighted sup-norm functionals of Brownian bridges via Monte Carlo simulation”, Asymptotic methods in probability and statistics (Ottawa, ON, 1997), North-Holland, Amsterdam, 1998, 707–719 | DOI | MR | Zbl

[16] F. Eicker, “The asymptotic distribution of the suprema of the standardized empirical processes”, Ann. Statist., 7:1 (1979), 116–138 | DOI | MR | Zbl

[17] B. V. Gnedenko, V. S. Korolyuk, A. V. Skorokhod, “Asymptotic expansions in probability theory”, Proceedings of the 4th Berkeley symposium on mathematical statistics and probability (1960), v. 2, Univ. California Press, Berkeley, Calif., 1961, 153–170 | MR | Zbl

[18] Yu. I. Ingster, “Some problems of hypothesis testing leading to infinitely divisible distributions”, Math. Methods Statist., 6:1 (1997), 47–69 | MR | Zbl

[19] Yu. I. Ingster, “Minimax detection of a signal for $l_n$-balls”, Math. Methods Statist., 7:4 (1998), 401–428 | MR | Zbl

[20] Yu. I. Ingster, C. Pouet, A. B. Tsybakov, “Classification of sparse high-dimensional vectors”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367:1906 (2009), 4427–4448 | DOI | MR | Zbl

[21] D. Jaeschke, “The asymptotic distribution of the supremum of the standardized empirical distribution function on subintervals”, Ann. Statist., 7:1 (1979), 108–115 | DOI | MR | Zbl

[22] L. Jager, J. A. Wellner, “Goodness-of-fit tests via phi-divergences”, Ann. Statist., 35:5 (2007), 2018–2053 | DOI | MR | Zbl

[23] B. Klaus, K. Strimmer, “Signal detection for rare and weak features: higher criticism or false discovery rates?”, Biostatistics, 14 (2013), 129–143 | DOI

[24] N. Meinshausen, J. Rice, “Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses”, Ann. Statist., 34:1 (2006), 373–393 | DOI | MR | Zbl

[25] Ya. Nikitin, Asymptotic efficiency of nonparametric tests, Cambridge Univ. Press, Cambridge, 1995, xvi+274 pp. | DOI | MR | MR | Zbl | Zbl

[26] M. Orasch, W. Pouliot, “Tabulating weighted sup-norm functionals used in change-point analysis”, J. Stat. Comput. Simul., 74:4 (2004), 249–276 | DOI | MR | Zbl

[27] N. E. O'Reilly, “On the weak convergence of empirical processes in sup-norm metrics”, Ann. Probability, 2:4 (1974), 642–651 | DOI | MR | Zbl

[28] T. Pavlenko, A. Björkström, A. Tillander, “Covariance structure approximation via gLasso in high-dimensional supervised classification”, J. Appl. Stat., 39:8 (2012), 1643–1666 | DOI | MR | Zbl

[29] G. R. Shorack, J. A. Wellner, Empirical processes with applications to statistics, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1986, xxxviii+938 pp. | MR | Zbl

[30] A. Tillander, Classification models for high-dimensional data with sparsity patterns, PhD thesis, Stockholm Univ., Stockholm, 2013