Mots-clés : multiple comparisons
@article{TVP_2018_63_2_a6,
author = {N. Stepanova and T. Pavlenko},
title = {Goodness-of-fit tests based on sup-functionals of weighted empirical processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {358--388},
year = {2018},
volume = {63},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a6/}
}
TY - JOUR AU - N. Stepanova AU - T. Pavlenko TI - Goodness-of-fit tests based on sup-functionals of weighted empirical processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 358 EP - 388 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a6/ LA - en ID - TVP_2018_63_2_a6 ER -
N. Stepanova; T. Pavlenko. Goodness-of-fit tests based on sup-functionals of weighted empirical processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 358-388. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a6/
[1] T. W. Anderson, D. A. Darling, “Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes”, Ann. Math. Statist., 23:2 (1952), 193–212 | DOI | MR | Zbl
[2] P. J. Bickel, “Edgeworth expansions in nonparametric statistics”, Ann. Statist., 2 (1974), 1–20 | DOI | MR | Zbl
[3] A. A. Borovkov, N. M. Sycheva, “On asymptotically optimal non-parametric tests”, Theory Probab. Appl., 13:3 (1968), 359–393 | DOI | MR | Zbl
[4] T. T. Cai, X. J. Jeng, J. Jin, “Optimal detection of heterogeneous and heteroscedastic mixtures”, J. R. Stat. Soc. Ser. B Stat. Methodol., 73:5 (2011), 629–662 | DOI | MR | Zbl
[5] D. M. Čibisov, “Some theorems on the limiting behavior of empirical distribution functions”, Select. Transl. Math. Statist. and Probability, 6, Amer. Math. Soc., Providence, R.I., 1966, 147–156 | MR | Zbl
[6] M. Csörgő, S. Csörgő, L. Horváth, D. Mason, “Weighted empirical and quantile processes”, Ann. Probab., 14:1 (1986), 31–85 | DOI | MR | Zbl
[7] M. Csörgő, L. Horváth, “20 nonparametric methods for changepoint problems”, Quality control and reliability, Handbook of Statist., 7, North-Holland Publishing Co., Amsterdam, 1988, 403–425 | DOI | MR | Zbl
[8] M. Csörgő, L. Horváth, Weighted approximations in probability and statistics, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Ltd., Chichester, 1993, xvi+442 pp. | MR | Zbl
[9] M. Csörgő, L. Horváth, Limit theorems in change-point analysis, Wiley Ser. Probab. Stat., John Wiley Sons, Ltd., Chichester, 1997, xvi+414 pp. | MR | Zbl
[10] M. Csörgő, P. Révész, Strong approximations in probability and statistics, Academic Press, Inc., New York–London, 1981, 284 pp. | MR | Zbl
[11] D. A. Darling, P. Erdős, “A limit theorem for the maximum of normalized sums of independent random variables”, Duke Math. J., 23 (1956), 143–155 | DOI | MR | Zbl
[12] A. DasGupta, Asymptotic theory of statistics and probability, Springer Texts Statist., Springer, New York, 2008, xxviii+722 pp. | DOI | MR | Zbl
[13] D. Donoho, J. Jin, “Higher criticism for detecting sparse heterogeneous mixtures”, Ann. Statist., 32:3 (2004), 962–994 | DOI | MR | Zbl
[14] D. Donoho, J. Jin, “Feature selection by higher criticism thresholding achieves the optimal phase diagram”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367:1906 (2009), 4449–4470 | DOI | MR | Zbl
[15] B. J. Eastwood, V. R. Eastwood, “Tabulating weighted sup-norm functionals of Brownian bridges via Monte Carlo simulation”, Asymptotic methods in probability and statistics (Ottawa, ON, 1997), North-Holland, Amsterdam, 1998, 707–719 | DOI | MR | Zbl
[16] F. Eicker, “The asymptotic distribution of the suprema of the standardized empirical processes”, Ann. Statist., 7:1 (1979), 116–138 | DOI | MR | Zbl
[17] B. V. Gnedenko, V. S. Korolyuk, A. V. Skorokhod, “Asymptotic expansions in probability theory”, Proceedings of the 4th Berkeley symposium on mathematical statistics and probability (1960), v. 2, Univ. California Press, Berkeley, Calif., 1961, 153–170 | MR | Zbl
[18] Yu. I. Ingster, “Some problems of hypothesis testing leading to infinitely divisible distributions”, Math. Methods Statist., 6:1 (1997), 47–69 | MR | Zbl
[19] Yu. I. Ingster, “Minimax detection of a signal for $l_n$-balls”, Math. Methods Statist., 7:4 (1998), 401–428 | MR | Zbl
[20] Yu. I. Ingster, C. Pouet, A. B. Tsybakov, “Classification of sparse high-dimensional vectors”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367:1906 (2009), 4427–4448 | DOI | MR | Zbl
[21] D. Jaeschke, “The asymptotic distribution of the supremum of the standardized empirical distribution function on subintervals”, Ann. Statist., 7:1 (1979), 108–115 | DOI | MR | Zbl
[22] L. Jager, J. A. Wellner, “Goodness-of-fit tests via phi-divergences”, Ann. Statist., 35:5 (2007), 2018–2053 | DOI | MR | Zbl
[23] B. Klaus, K. Strimmer, “Signal detection for rare and weak features: higher criticism or false discovery rates?”, Biostatistics, 14 (2013), 129–143 | DOI
[24] N. Meinshausen, J. Rice, “Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses”, Ann. Statist., 34:1 (2006), 373–393 | DOI | MR | Zbl
[25] Ya. Nikitin, Asymptotic efficiency of nonparametric tests, Cambridge Univ. Press, Cambridge, 1995, xvi+274 pp. | DOI | MR | MR | Zbl | Zbl
[26] M. Orasch, W. Pouliot, “Tabulating weighted sup-norm functionals used in change-point analysis”, J. Stat. Comput. Simul., 74:4 (2004), 249–276 | DOI | MR | Zbl
[27] N. E. O'Reilly, “On the weak convergence of empirical processes in sup-norm metrics”, Ann. Probability, 2:4 (1974), 642–651 | DOI | MR | Zbl
[28] T. Pavlenko, A. Björkström, A. Tillander, “Covariance structure approximation via gLasso in high-dimensional supervised classification”, J. Appl. Stat., 39:8 (2012), 1643–1666 | DOI | MR | Zbl
[29] G. R. Shorack, J. A. Wellner, Empirical processes with applications to statistics, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1986, xxxviii+938 pp. | MR | Zbl
[30] A. Tillander, Classification models for high-dimensional data with sparsity patterns, PhD thesis, Stockholm Univ., Stockholm, 2013