Weak Euler scheme for Lévy-driven stochastic differential equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 306-329 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies the rate of convergence of the weak Euler approximation for solutions to Lévy-driven stochastic differential equations with nondegenerate main part driven by a spherically symmetric stable process, under the assumption of Hölder continuity. The rate of convergence is derived for a full regularity scale based on solving the associated backward Kolmogorov equation and investigating the dependence of the rate on the regularity of the coefficients and driving processes.
Keywords: stochastic differential equations, weak Euler approximation, rate of convergence
Mots-clés : Lévy processes, Hölder conditions.
@article{TVP_2018_63_2_a4,
     author = {R. Mikulevi\v{c}ius and Ch. Zhang},
     title = {Weak {Euler} scheme for {L\'evy-driven} stochastic differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {306--329},
     year = {2018},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a4/}
}
TY  - JOUR
AU  - R. Mikulevičius
AU  - Ch. Zhang
TI  - Weak Euler scheme for Lévy-driven stochastic differential equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 306
EP  - 329
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a4/
LA  - en
ID  - TVP_2018_63_2_a4
ER  - 
%0 Journal Article
%A R. Mikulevičius
%A Ch. Zhang
%T Weak Euler scheme for Lévy-driven stochastic differential equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 306-329
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a4/
%G en
%F TVP_2018_63_2_a4
R. Mikulevičius; Ch. Zhang. Weak Euler scheme for Lévy-driven stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 306-329. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a4/

[1] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Stud. Adv. Math., 93, Cambridge Univ. Press, Cambridge, 2004, xxiv+384 pp. | DOI | MR | Zbl

[2] Lévy processes. Theory and applications, eds. O. E. Barndorff-Nielsen, Th. Mikosch, S. I. Resnick, Birkhäuser Boston, Inc., Boston, MA, 2001, xii+415 pp. | DOI | MR | Zbl

[3] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | DOI | MR | Zbl

[4] J. Bertoin, Lévy processes, Cambridge Tracts in Math., 121, Cambridge Univ. Press, Cambridge, 1996, x+265 pp. | MR | Zbl

[5] L. A. Caffarelli, X. Cabré, Fully nonlinear elliptic equations, Amer. Math. Soc. Colloq. Publ., 43, Amer. Math. Soc., Providence, RI, 1995, vi+104 pp. | DOI | MR | Zbl

[6] H. Dong, D. Kim, “Schauder estimates for a class of non-local elliptic equations”, Discrete Contin. Dyn. Syst., 33:6 (2013), 2319–2347 | DOI | MR | Zbl

[7] G. B. Folland, Real analysis. Modern techniques and their applications, Pure Appl. Math. (N. Y.), 2nd ed., John Wiley Sons, Inc., New York, 1999, xvi+386 pp. | MR | Zbl

[8] J. Jacod, “The Euler scheme for Lévy driven stochastic differential equations: limit theorems”, Ann. Probab., 32:3 (2004), 1830–1872 | DOI | MR | Zbl

[9] J. Jacod, Th. G. Kurtz, S. Méléard, Ph. Protter, “The approximate Euler method for Lévy driven stochastic differential equations”, Ann. Inst. H. Poincaré Probab. Statist., 41:3 (2005), 523–558 | DOI | MR | Zbl

[10] P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Appl. Math. (N. Y.), 23, Springer-Verlag, Berlin, 1992, xxxvi+632 pp. | DOI | MR | Zbl

[11] A. Kohatsu-Higa, P. Tankov, “Jump-adapted discretization schemes for Lévy-driven SDEs”, Stochastic Process. Appl., 120:11 (2010), 2258–2285 | DOI | MR | Zbl

[12] T. Komatsu, “On the martingale problem for generators of stable processes with perturbations”, Osaka J. Math., 21:1 (1984), 113–132 | MR | Zbl

[13] R. Mikulevicius, E. Platen, “Rate of convergence of the Euler approximation for diffusion processes”, Math. Nachr., 151 (1991), 233–239 | DOI | MR | Zbl

[14] R. Mikulevičius, H. Pragarauskas, “On the martingale problem associated with nondegenerate Lévy operators”, Lithuanian Math. J., 32:3 (1992), 297–311 | DOI | MR | Zbl

[15] R. Mikulevičius, H. Pragarauskas, “On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces”, Lithuanian Math. J., 32:2 (1992), 238–264 | DOI | MR | Zbl

[16] R. Mikulevicius, H. Pragarauskas, “On Hölder solutions of the integro-differential Zakai equation”, Stochastic Process. Appl., 119:10 (2009), 3319–3355 | DOI | MR | Zbl

[17] R. Mikulevisius, H. Pragarauskas, “On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem”, Potential Anal., 40:4 (2014), 539–563 | DOI | MR | Zbl

[18] R. Mikulevičius, C. Zhang, “On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes”, Stochastic Process. Appl., 121:8 (2011), 1720–1748 | DOI | MR | Zbl

[19] G. N. Milshtein, “A method of second-order accuracy integration of stochastic differential equations”, Theory Probab. Appl., 23:2 (1979), 396–401 | DOI | MR | Zbl

[20] G. N. Mil'shtein, “Weak approximation of solutions of systems of stochastic differential equations”, Theory Probab. Appl., 30:4 (1986), 750–766 | DOI | MR | Zbl

[21] B. Øksendal, Stochastic differential equations. An introduction with applications, Universitext, 6th ed., Springer-Verlag, Berlin, 1998, xxiv+324 pp. | DOI | MR | Zbl

[22] Ph. Protter, D. Talay, “The Euler scheme for Lévy driven stochastic differential equations”, Ann. Probab., 25:1 (1997), 393–423 | DOI | MR | Zbl

[23] S. Rubenthaler, “Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process”, Stochastic Process. Appl., 103:2 (2003), 311–349 | DOI | MR | Zbl

[24] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999, xii+486 pp. | MR | Zbl

[25] W. Schoutens, Levy processes in finance. Pricing financial derivatives, Wiley Ser. Probab. Statist., John Wiley Sons, Ltd., Hoboken, NJ, 2003, xv+170 pp. | DOI

[26] D. Talay, “Efficient numerical schemes for the approximation of expectations of functionals of the solution of a S.D.E., and applications”, Filtering and control of random processes (Paris, 1983), Lect. Notes Control Inf. Sci., 61, Springer, Berlin, 1984, 294–313 | DOI | MR | Zbl

[27] D. Talay, “Discrétisation d'une équation différentielle stochastique et calcul approché d'espérances de fonctionnelles de la solution”, RAIRO Modél. Math. Anal. Numér., 20:1 (1986), 141–179 | DOI | MR | Zbl

[28] H. Triebel, Theory of function spaces II, Monogr. Math., 84, Birkhäuser Verlag, Basel, 1992, viii+370 pp. | DOI | MR | Zbl

[29] R. L. Wolpert, M. S. Taqqu, “Fractional Ornstein–Uhlenbeck Lévy processes and the Telecom process: upstairs and downstairs”, Signal Process., 85:8 (2005), 1523–1545 | DOI | Zbl