Weak Euler scheme for L\'evy-driven stochastic differential equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 306-329
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies the rate of convergence of the weak Euler approximation for
solutions to Lévy-driven stochastic differential equations with
nondegenerate main part driven by a spherically symmetric stable process, under
the assumption of Hölder continuity. The rate of convergence is derived for
a full regularity scale based on solving the associated backward Kolmogorov
equation and investigating the dependence of the rate on the regularity of the
coefficients and driving processes.
Keywords:
stochastic differential equations, Lévy processes, weak Euler approximation, rate of convergence, Hölder conditions.
@article{TVP_2018_63_2_a4,
author = {R. Mikulevi\v{c}ius and Ch. Zhang},
title = {Weak {Euler} scheme for {L\'evy-driven} stochastic differential equations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {306--329},
publisher = {mathdoc},
volume = {63},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a4/}
}
TY - JOUR AU - R. Mikulevičius AU - Ch. Zhang TI - Weak Euler scheme for L\'evy-driven stochastic differential equations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 306 EP - 329 VL - 63 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a4/ LA - en ID - TVP_2018_63_2_a4 ER -
R. Mikulevičius; Ch. Zhang. Weak Euler scheme for L\'evy-driven stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 306-329. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a4/