The $I$-function distribution and its extensions
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 284-305 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we introduce a new probability distribution on $(0,\infty)$ associated with the $I$-function, and hence called the $I$-function distribution. This distribution generalizes several known distributions with positive support (see the table at the end of the paper). It is also shown that the product, quotient, and rational power of independent random variates with $I$-distribution are random variates with $I$-distribution. Another new distribution—the $I$-function Gaussian distribution ($IFIG$ distribution)—is introduced and defined in terms of the $I$-function. For this distribution, the representations of its Mellin and Laplace transforms are obtained. The utilities of the $I$-function distribution are discussed with an application to the likelihood ratio statistic.
Keywords: $I$-function, $H$-function, Mellin transform, likelihood ratio statistics.
Mots-clés : Laplace transform
@article{TVP_2018_63_2_a3,
     author = {P. Vellaisamy and K. K. Kataria},
     title = {The $I$-function distribution and its extensions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {284--305},
     year = {2018},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a3/}
}
TY  - JOUR
AU  - P. Vellaisamy
AU  - K. K. Kataria
TI  - The $I$-function distribution and its extensions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 284
EP  - 305
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a3/
LA  - en
ID  - TVP_2018_63_2_a3
ER  - 
%0 Journal Article
%A P. Vellaisamy
%A K. K. Kataria
%T The $I$-function distribution and its extensions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 284-305
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a3/
%G en
%F TVP_2018_63_2_a3
P. Vellaisamy; K. K. Kataria. The $I$-function distribution and its extensions. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 284-305. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a3/

[1] I. S. Ansari, F. Yilmaz, M.-S. Alouini, “On the sum of squared $\eta-\mu$ random variates with application to the performance of wireless communication systems”, 2013 IEEE 77th vehicular technology conference (VTC Spring), proceedings, e-book (Drezden, 2013), IEEE, Piscataway, NJ, 2013, 1–6 | DOI

[2] I. S. Ansari, F. Yilmaz, M.-S. Alouini, O. Kucur, “New results on the sum of Gamma random variates with application to the performance of wireless communication systems over Nakagami-$m$ fading channels”, Trans. Emerging Tel. Tech., 28:1 (2017), 2912 | DOI

[3] O. E. Barndorff-Nielsen, “Normal inverse Gaussian distributions and stochastic volatility modelling”, Scand. J. Statist., 24:1 (1997), 1–13 | DOI | MR | Zbl

[4] C. D. Bodenschatz, Finding an $H$-function distribution for the sum of independent $H$-function variates, Thesis (Ph.D.), Univ. of Texas, Austin, 1992, 248 pp. | MR

[5] B. D. Carter, M. D. Springer, “The distribution of products, quotients and powers of independent $H$-function variates”, SIAM J. Appl. Math., 33:4 (1977), 542–558 | DOI | MR | Zbl

[6] I. D. Cook, Jr., The $H$-function and probability density functions of certain algebraic combinations of independent random variables with $H$-function probability distribution, Thesis (Ph.D.), Univ. of Texas, Austin, 1981, 239 pp. | MR

[7] B. Epstein, “Some applications of the Mellin transform in statistics”, Ann. Math. Statist., 19:3 (1948), 370–379 | DOI | MR | Zbl

[8] Ch. Fox, “The $G$ and $H$ functions as symmetrical Fourier kernels”, Trans. Amer. Math. Soc., 98:3 (1961), 395–429 | DOI | MR | Zbl

[9] M. E. Ghitany, S. A. Al-Awadhi, S. L. Kalla, “On hypergeometric generalized negative binomial distribution”, Int. J. Math. Math. Sci., 29:12 (2002), 727–736 | DOI | MR | Zbl

[10] A. A. Inayat-Hussain, “New properties of hypergeometric series derivable from Feynman integrals. II. A generalisation of the $H$ function”, J. Phys. A, 20:13 (1987), 4119–4128 | DOI | MR | Zbl

[11] N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, v. 2, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1995, xxii+719 pp. | MR | Zbl

[12] K. K. Kataria, P. Vellaisamy, “Some fractional calculus results associated with the $I$-function”, Matematiche (Catania), 70:2 (2015), 173–190 | DOI | MR | Zbl

[13] K. K. Kataria, P. Vellaisamy, “On densities of the product, quotient and power of independent subordinators”, J. Math. Anal. Appl., 462:2 (2018), 1627–1643 | DOI | MR

[14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier Science B.V., Amsterdam, 2006, xvi+523 pp. | MR | Zbl

[15] K. S. Kumari, T. M. Vasudevan Nambisan, A. K. Rathie, “A study of $I$-functions of two variables”, Matematiche (Catania), 69:1 (2014), 285–305 | MR | Zbl

[16] L. M. Leemis, J. T. McQueston, “Univariate distribution relationships”, Amer. Statist., 62:1 (2008), 45–53 | DOI | MR

[17] A. M. Mathai, “Some properties of Mittag-Leffler functions and matrix-variate analogues: a statistical perspective”, Fract. Calc. Appl. Anal., 13:2 (2010), 113–132 | MR | Zbl

[18] A. M. Mathai, R. K. Saxena, “Distribution of a product and the structural set up of densities”, Ann. Math. Statist., 40:4 (1969), 1439–1448 | DOI | MR | Zbl

[19] A. M. Mathai, R. K. Saxena, H. J. Haubold, The $H$-function. Theory and applications, Springer, New York, 2010, xiv+268 pp. | DOI | MR | Zbl

[20] S. Nadarajah, A. K. Gupta, “A generalized gamma distribution with application to drought data”, Math. Comput. Simulation, 74:1 (2007), 1–7 | DOI | MR | Zbl

[21] B. N. Nagarsenker, K. C. S. Pillai, “Distribution of the likelihood ratio criterion for testing a hypothesis specifying a covariance matrix”, Biometrika, 60:2 (1973), 359–364 | DOI | MR | Zbl

[22] B. N. Nagarsenker, K. C. S. Pillai, “Distribution of the likelihood ratio criterion for testing $\Sigma=\Sigma_0$, $\mu=\mu_0$”, J. Multivariate Anal., 4:1 (1974), 114–122 | DOI | MR | Zbl

[23] A. K. Rathie, “A new generalization of generalized hypergeometric functions”, Matematiche (Catania), 52:2 (1997), 297–310 | MR | Zbl

[24] N. Sebastian, “A generalized gamma model associated with a Bessel function”, Integral Transforms Spec. Funct., 22:9 (2011), 631–645 | DOI | MR | Zbl

[25] M. D. Springer, The algebra of random variables, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–Chichester–Brisbane, 1979, xix+470 pp. | MR | Zbl

[26] M. D. Springer, W. E. Thompson, “The distribution of products of beta, gamma and Gaussian random variables”, SIAM J. Appl. Math., 18:4 (1970), 721–737 | DOI | MR | Zbl

[27] E. W. Stacy, “A generalization of the gamma distribution”, Ann. Math. Statist., 33:3 (1962), 1187–1192 | DOI | MR | Zbl

[28] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 2nd ed., Clarendron Press, Oxford, 1948, x+394 pp. | MR | Zbl

[29] M. Xia, Y.-Ch. Wu, S. Aïssa, “Exact outage probability of dual-hop CSI-assisted AF relaying over Nakagami-$m$ fading channels”, IEEE Trans. Signal Process., 60:10 (2012), 5578–5583 | DOI | MR