Mots-clés : Laplace transform
@article{TVP_2018_63_2_a3,
author = {P. Vellaisamy and K. K. Kataria},
title = {The $I$-function distribution and its extensions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {284--305},
year = {2018},
volume = {63},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a3/}
}
P. Vellaisamy; K. K. Kataria. The $I$-function distribution and its extensions. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 284-305. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a3/
[1] I. S. Ansari, F. Yilmaz, M.-S. Alouini, “On the sum of squared $\eta-\mu$ random variates with application to the performance of wireless communication systems”, 2013 IEEE 77th vehicular technology conference (VTC Spring), proceedings, e-book (Drezden, 2013), IEEE, Piscataway, NJ, 2013, 1–6 | DOI
[2] I. S. Ansari, F. Yilmaz, M.-S. Alouini, O. Kucur, “New results on the sum of Gamma random variates with application to the performance of wireless communication systems over Nakagami-$m$ fading channels”, Trans. Emerging Tel. Tech., 28:1 (2017), 2912 | DOI
[3] O. E. Barndorff-Nielsen, “Normal inverse Gaussian distributions and stochastic volatility modelling”, Scand. J. Statist., 24:1 (1997), 1–13 | DOI | MR | Zbl
[4] C. D. Bodenschatz, Finding an $H$-function distribution for the sum of independent $H$-function variates, Thesis (Ph.D.), Univ. of Texas, Austin, 1992, 248 pp. | MR
[5] B. D. Carter, M. D. Springer, “The distribution of products, quotients and powers of independent $H$-function variates”, SIAM J. Appl. Math., 33:4 (1977), 542–558 | DOI | MR | Zbl
[6] I. D. Cook, Jr., The $H$-function and probability density functions of certain algebraic combinations of independent random variables with $H$-function probability distribution, Thesis (Ph.D.), Univ. of Texas, Austin, 1981, 239 pp. | MR
[7] B. Epstein, “Some applications of the Mellin transform in statistics”, Ann. Math. Statist., 19:3 (1948), 370–379 | DOI | MR | Zbl
[8] Ch. Fox, “The $G$ and $H$ functions as symmetrical Fourier kernels”, Trans. Amer. Math. Soc., 98:3 (1961), 395–429 | DOI | MR | Zbl
[9] M. E. Ghitany, S. A. Al-Awadhi, S. L. Kalla, “On hypergeometric generalized negative binomial distribution”, Int. J. Math. Math. Sci., 29:12 (2002), 727–736 | DOI | MR | Zbl
[10] A. A. Inayat-Hussain, “New properties of hypergeometric series derivable from Feynman integrals. II. A generalisation of the $H$ function”, J. Phys. A, 20:13 (1987), 4119–4128 | DOI | MR | Zbl
[11] N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, v. 2, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1995, xxii+719 pp. | MR | Zbl
[12] K. K. Kataria, P. Vellaisamy, “Some fractional calculus results associated with the $I$-function”, Matematiche (Catania), 70:2 (2015), 173–190 | DOI | MR | Zbl
[13] K. K. Kataria, P. Vellaisamy, “On densities of the product, quotient and power of independent subordinators”, J. Math. Anal. Appl., 462:2 (2018), 1627–1643 | DOI | MR
[14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier Science B.V., Amsterdam, 2006, xvi+523 pp. | MR | Zbl
[15] K. S. Kumari, T. M. Vasudevan Nambisan, A. K. Rathie, “A study of $I$-functions of two variables”, Matematiche (Catania), 69:1 (2014), 285–305 | MR | Zbl
[16] L. M. Leemis, J. T. McQueston, “Univariate distribution relationships”, Amer. Statist., 62:1 (2008), 45–53 | DOI | MR
[17] A. M. Mathai, “Some properties of Mittag-Leffler functions and matrix-variate analogues: a statistical perspective”, Fract. Calc. Appl. Anal., 13:2 (2010), 113–132 | MR | Zbl
[18] A. M. Mathai, R. K. Saxena, “Distribution of a product and the structural set up of densities”, Ann. Math. Statist., 40:4 (1969), 1439–1448 | DOI | MR | Zbl
[19] A. M. Mathai, R. K. Saxena, H. J. Haubold, The $H$-function. Theory and applications, Springer, New York, 2010, xiv+268 pp. | DOI | MR | Zbl
[20] S. Nadarajah, A. K. Gupta, “A generalized gamma distribution with application to drought data”, Math. Comput. Simulation, 74:1 (2007), 1–7 | DOI | MR | Zbl
[21] B. N. Nagarsenker, K. C. S. Pillai, “Distribution of the likelihood ratio criterion for testing a hypothesis specifying a covariance matrix”, Biometrika, 60:2 (1973), 359–364 | DOI | MR | Zbl
[22] B. N. Nagarsenker, K. C. S. Pillai, “Distribution of the likelihood ratio criterion for testing $\Sigma=\Sigma_0$, $\mu=\mu_0$”, J. Multivariate Anal., 4:1 (1974), 114–122 | DOI | MR | Zbl
[23] A. K. Rathie, “A new generalization of generalized hypergeometric functions”, Matematiche (Catania), 52:2 (1997), 297–310 | MR | Zbl
[24] N. Sebastian, “A generalized gamma model associated with a Bessel function”, Integral Transforms Spec. Funct., 22:9 (2011), 631–645 | DOI | MR | Zbl
[25] M. D. Springer, The algebra of random variables, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–Chichester–Brisbane, 1979, xix+470 pp. | MR | Zbl
[26] M. D. Springer, W. E. Thompson, “The distribution of products of beta, gamma and Gaussian random variables”, SIAM J. Appl. Math., 18:4 (1970), 721–737 | DOI | MR | Zbl
[27] E. W. Stacy, “A generalization of the gamma distribution”, Ann. Math. Statist., 33:3 (1962), 1187–1192 | DOI | MR | Zbl
[28] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 2nd ed., Clarendron Press, Oxford, 1948, x+394 pp. | MR | Zbl
[29] M. Xia, Y.-Ch. Wu, S. Aïssa, “Exact outage probability of dual-hop CSI-assisted AF relaying over Nakagami-$m$ fading channels”, IEEE Trans. Signal Process., 60:10 (2012), 5578–5583 | DOI | MR