On the order of random permutation with cycle weights
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 260-283

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\operatorname{Ord}(\tau)$ be the order of an element $\tau$ in the group $S_n$ of permutations of an $n$-element set $X$. The present paper is concerned with the so-called general parametric model of a random permutation; according to this model an arbitrary fixed permutation $\tau$ from $S_n$ is observed with the probability $\theta_1^{u_1}\dotsb\theta_n^{u_n}/H(n)$, where $u_i$ is the number of cycles of length $i$ of the permutation $\tau$, $\{\theta_i,\ i\in \mathbf{N}\}$ are some nonnegative parameters (the weights of cycles of length $i$ of the permutation $\tau$), and $H(n)$ is the corresponding normalizing factor. We assume that an arbitrary permutation $\tau_n$ has such a distribution. The function $p(n)=H(n)/n!$ is assumed to be $\mathrm{RO}$-varying at infinity with the lower index exceeding $-1$ (in particular, it can vary regularly), and the sequence $\{\theta_i,\ i\in \mathbf N\}$ is bounded. Under these assumptions it is shown that the random variable $\ln\operatorname{Ord}(\tau_n)$ is asymptotically normal with mean $\sum_{k=1}^n\theta_k\ln (k)/k$ and variance $\sum_{k=1}^n\theta_k\ln^2(k)/k$. In particular, this scheme subsumes the class of random $A$-permutations (i.e., when $\theta_i=\chi\{i\in A\}$), where $A$ is an arbitrary fixed subset of the positive integers. This scheme also includes the Ewens model of random permutation, where $\theta_i\equiv\theta>0$ for any $i\in\mathbf N$. The limit theorem we prove here extends some previous results for these schemes. In particular, with $\theta_i\equiv1$ for any $i\in\mathbf N$, the result just mentioned implies the well-known Erdős–Turán limit theorem.
Keywords: random permutation with cycle weights, random $A$-permutation, random permutation in the Ewens mode, order of random permutation, regularly varying function, $\mathrm{RO}$-varying function.
@article{TVP_2018_63_2_a2,
     author = {A. L. Yakymiv},
     title = {On the order of random permutation with cycle weights},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {260--283},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a2/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - On the order of random permutation with cycle weights
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 260
EP  - 283
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a2/
LA  - ru
ID  - TVP_2018_63_2_a2
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T On the order of random permutation with cycle weights
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 260-283
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a2/
%G ru
%F TVP_2018_63_2_a2
A. L. Yakymiv. On the order of random permutation with cycle weights. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 260-283. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a2/