Massive excursions of Gaussian isotropic fields. Method of moments
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 240-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior of probability of large massive excursions above a high level is evaluated for Gaussian isotropic twice differentiable Gaussian fields. A massive excursion is the excursion with base diameter exceeding a fixed positive number. For proofs, we introduce and study a vector Gaussian process with components that are independent copies of the initial field, and consider the point process of exits of trajectories of this process from an appropriate infinitely expanding set. By studying the asymptotic behavior of the first and second moments of distribution of this point process, the desired asymptotic behavior is obtained. Moreover, general results on the logarithmic (rough) asymptotic behavior of the large massive excursion probabilities are put forward.
Keywords: Gaussian field, Rice moment method, point process, critical points of excursions.
Mots-clés : massive excursions
@article{TVP_2018_63_2_a1,
     author = {V. I. Piterbarg},
     title = {Massive excursions of {Gaussian} isotropic fields. {Method} of moments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {240--259},
     year = {2018},
     volume = {63},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a1/}
}
TY  - JOUR
AU  - V. I. Piterbarg
TI  - Massive excursions of Gaussian isotropic fields. Method of moments
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 240
EP  - 259
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a1/
LA  - ru
ID  - TVP_2018_63_2_a1
ER  - 
%0 Journal Article
%A V. I. Piterbarg
%T Massive excursions of Gaussian isotropic fields. Method of moments
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 240-259
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a1/
%G ru
%F TVP_2018_63_2_a1
V. I. Piterbarg. Massive excursions of Gaussian isotropic fields. Method of moments. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 240-259. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a1/

[1] T. W. Anderson, An introduction to multivariate statistical analysis, John Wiley Sons, Inc., New York; Chapman Hall, Ltd., London, 1958, xii+374 pp. | MR | Zbl | Zbl

[2] A. I. Elizarov, Predelnye teoremy dlya funktsionalov ot traektorii sluchainykh protsessov i polei, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1988

[3] E. V. Kremena, V. I. Piterbarg, J. Hüsler, “On shape of trajectories of Gaussian processes having large massive excursions”, Theory Probab. Appl., 58:4 (2014), 582–600 | DOI | DOI | MR | Zbl

[4] J. Husler, E. V. Kremena, V. I. Piterbarg, “On shape of trajectories of Gaussian processes having large massive excursions. II”, Theory Probab. Appl., 60:3 (2016), 513–520 | DOI | DOI | MR | Zbl

[5] V. P. Nosko, “The investigation of high-level excursions of Gaussian fields: a fresh approach involving convexity”, Theory Probab. Appl., 35:1 (1990), 157–163 | DOI | MR | Zbl

[6] V. I. Piterbarg, “Metod Raisa dlya gaussovskikh sluchainykh polei”, Fundament. i prikl. matem., 2:1 (1996), 187–204 | MR | Zbl

[7] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press, London, 2015, xi+167 pp. | Zbl

[8] R. J. Adler, The geometry of random fields, Wiley Ser. Probab. Math. Statist., John Wiley Sons, Ltd., Chichester, 1981, xi+280 pp. | MR | Zbl

[9] J.-M. Azaïs, M. Wschebor, Level sets and extrema of random processes and fields, John Wiley Sons, Inc., Hoboken, NJ, 2009, xii+393 pp. | DOI | MR | Zbl

[10] J. Hüsler, A. Ladneva, V. Piterbarg, “On clusters of high extremes of Gaussian stationary processes with $\varepsilon$-separation”, Electron. J. Probab., 15 (2010), 59, 1825–1862 | DOI | MR | Zbl

[11] J. Hüsler, V. I. Piterbarg, “On shape of high massive excursions of trajectories of Gaussian homogeneous fields”, Extremes, 20:3 (2017), 691–711 | DOI | MR | Zbl

[12] O. Kallenberg, Random measures, Schriftenreihe des Zentralinstituts für Mathematik und Mechanik bei der Akademie der Wissenschaften der DDR, 23, Akademie-Verlag, Berlin, 1975, vi+104 pp. | MR | Zbl

[13] V. I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Transl. Math. Monogr., 148, reprint ed., Amer. Math. Soc., Providence, RI, 2012, xii+206 pp. | MR | Zbl

[14] A. I. Zhdanov, V. I. Piterbarg, “Bolshie vybrosy protsessov gaussovskogo khaosa. Approksimatsiya v diskretnom vremeni”, Teoriya veroyatn. i ee primen., 63:1 (2018), 3–28 | DOI | MR

[15] S. O. Rice, “Mathematical analysis of random noise”, Bell System Tech. J., 23:3 (1944), 282–332 ; 24:1 (1945), 46–156 | DOI | MR | Zbl | DOI | MR | Zbl