On estimation of parameters in the case of discontinuous densities
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 211-239
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper is concerned with the problem of construction of estimators of parameters
in the case when
the density $f_\theta(x)$ of the distribution $\mathbf{P}_\theta$ of a sample $\mathrm X$ of size $n$
has at least one point of discontinuity $x(\theta)$, $x'(\theta)\neq 0$. It is assumed that either
(a) from a priori considerations one can specify a localization of the parameter $\theta$
(or points of discontinuity) satisfying easily verifiable conditions,
or (b) there exists a consistent estimator $\widetilde{\theta}$
of the parameter $\theta$ (possibly constructed from the same sample $\mathrm{X}$),
which also provides some localization. Then a simple rule is used to construct,
from the segment of the empirical  distribution function defined by the localization,
a family of estimators $\theta^*_{g}$ that depends on the parameter $g$ such that
(1) for sufficiently large $n$, the probabilities $\mathbf{P}(\theta^*_{g}-\theta>v/n)$ and
$\mathbf{P}(\theta^*_{g}-\theta-v/n)$ can be explicitly estimated by a $v$-exponential bound;
(2) in case (b) under suitable conditions (see conditions  I–IV
in Chap. 5 of
[I. A. Ibragimov and R. Z. Has'minskiĭ, Statistical Estimation. Asymptotic Theory, Springer, New York, 1981],
where maximum likelihood estimators were studied),
a value of $g$ can be given such that the estimator $\theta^*_{g}$ is asymptotically equivalent
to the maximum likelihood estimator $\widehat{\theta}$; i.e.,
$\mathbf{P}_\theta(n(\theta^*_{g}-\theta)>v)\sim
\mathbf{P}_\theta(n(\widehat{\theta}-\theta)>v)$ for any
$v$ and $n\to\infty$;
(3) the value of $g$ can be chosen so that the inequality
$\mathbf{E}_\theta(\theta^*_{g}-\theta)^2
\mathbf{E}_\theta(\widehat{\theta}-\theta)^2$ is possible for sufficiently large $n$.
Effectively no smoothness conditions are imposed on $f_\theta(x)$.
With an available “auxiliary” consistent estimator $\widetilde{\theta}$,
simple rules are suggested for finding estimators
$\theta^*_g$ which are asymptotically equivalent to $\widehat{\theta}$.
The limiting distribution of $n(\theta^*_g-\theta)$ as $n\to\infty$ is studied.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
estimators of parameters, maximum likelihood estimator, distribution with discontinuous density,
change-point problem, infinitely divisible factorization.
                    
                  
                
                
                @article{TVP_2018_63_2_a0,
     author = {A. A. Borovkov},
     title = {On estimation of parameters in the case of discontinuous densities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {211--239},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a0/}
}
                      
                      
                    A. A. Borovkov. On estimation of parameters in the case of discontinuous densities. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 211-239. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a0/
