@article{TVP_2018_63_2_a0,
author = {A. A. Borovkov},
title = {On estimation of parameters in the case of discontinuous densities},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {211--239},
year = {2018},
volume = {63},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a0/}
}
A. A. Borovkov. On estimation of parameters in the case of discontinuous densities. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 211-239. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a0/
[1] I. A. Ibragimov, R. Z. Has'minskiĭ, Statistical estimation. Asymptotic theory, Appl. Math., 16, Springer-Verlag, New York–Berlin, 1981, vii+403 pp. | MR | MR | Zbl | Zbl
[2] A. A. Borovkov, Mathematical statistics, Gordon Breach Science Publishers, Amsterdam, 1998, xxii+570 pp. | MR | Zbl
[3] M. S. Ermakov, “Asymptotic behavior of parameter estimators of a multivariate discontinuous density”, J. Soviet Math., 34:1 (1986), 1413–1427 | DOI | MR | Zbl
[4] V. E. Mosyagin, “An estimate of the rate of convergence of the distribution of the maximum probability process in the nonregular case”, Sib. Math. J., 32:4 (1991), 616–622 | DOI | MR | Zbl
[5] V. E. Mosyagin, “Asymptotic representation of the process of the likelihood ratio in the case of a discontinuous density”, Sib. Math. J., 35:2 (1994), 375–382 | DOI | MR | Zbl
[6] V. E. Mosyagin, “Estimation of the convergence rate for the distributions of normalized maximum likelihood estimators in the case of a discontinuous density”, Sib. Math. J., 37:4 (1996), 788–796 | DOI | MR | Zbl
[7] I. S. Borisov, D. V. Mironov, “An asymptotic representation for the likelihood ratio for multidimensional samples with discontinuous desities”, Theory Probab. Appl., 45:2 (2001), 289–300 | DOI | DOI | MR | Zbl
[8] I. S. Borisov, D. V. Mironov, “An asymptotic representation of the likelihood ratio for irregular families of distributions in the multivariate case”, Sib. Math. J., 42:2 (2001), 232–244 | DOI | MR | Zbl
[9] A. A. Borovkov, Stochastic processes in queueing theory, Appl. Math., 4, Springer-Verlag, New York–Berlin, 1976, xi+280 pp. | MR | MR | Zbl | Zbl
[10] E. A. Pecherskii, B. A. Rogozin, “On joint distributions of random variables associated with fluctuations of a process with independent increments”, Theory Probab. Appl., 14:3 (1969), 410–423 | DOI | MR | Zbl
[11] N. S. Bratiichuk, D. V. Gusak, Granichnye zadachi dlya protsessov s nezavisimymi prirascheniyami, Naukova dumka, Kiev, 1990, 264 pp. | MR | Zbl
[12] A. V. Skorokhod, Random processes with independent increments, Math. Appl. (Soviet Ser.), 47, Kluwer Acad. Publ., Dordrecht, 1991, xii+279 pp. | MR | MR | Zbl | Zbl
[13] V. E. Mosyagin, N. A. Shvemler, “Raspredelenie momenta maksimuma raznosti dvukh puassonovskikh protsessov s otritsatelnym lineinym snosom”, Sib. elektron. matem. izv., 13 (2016), 1229–1248 | DOI | MR | Zbl
[14] A. A. Borovkov, “New limit theorems in boundary problems for sums of independent terms”, Select. Transl. Math. Stat. Probab., 5, Amer. Math. Soc., Providence, RI, 1965, 315–372 ; “II”, 5, no. 4, 377–392 | MR | MR | Zbl | Zbl | MR | Zbl
[15] A. A. Borovkov, “Limit theorems on the distributions of maxima of sums of bounded lattice random variables. I”, Theory Probab. Appl., 5:2 (1960), 125–155 ; “II”, 5:4, 341–355 | DOI | DOI | MR | Zbl | Zbl