On estimation of parameters in the case of discontinuous densities
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 211-239

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the problem of construction of estimators of parameters in the case when the density $f_\theta(x)$ of the distribution $\mathbf{P}_\theta$ of a sample $\mathrm X$ of size $n$ has at least one point of discontinuity $x(\theta)$, $x'(\theta)\neq 0$. It is assumed that either (a) from a priori considerations one can specify a localization of the parameter $\theta$ (or points of discontinuity) satisfying easily verifiable conditions, or (b) there exists a consistent estimator $\widetilde{\theta}$ of the parameter $\theta$ (possibly constructed from the same sample $\mathrm{X}$), which also provides some localization. Then a simple rule is used to construct, from the segment of the empirical distribution function defined by the localization, a family of estimators $\theta^*_{g}$ that depends on the parameter $g$ such that (1) for sufficiently large $n$, the probabilities $\mathbf{P}(\theta^*_{g}-\theta>v/n)$ and $\mathbf{P}(\theta^*_{g}-\theta-v/n)$ can be explicitly estimated by a $v$-exponential bound; (2) in case (b) under suitable conditions (see conditions I–IV in Chap. 5 of [I. A. Ibragimov and R. Z. Has'minskiĭ, Statistical Estimation. Asymptotic Theory, Springer, New York, 1981], where maximum likelihood estimators were studied), a value of $g$ can be given such that the estimator $\theta^*_{g}$ is asymptotically equivalent to the maximum likelihood estimator $\widehat{\theta}$; i.e., $\mathbf{P}_\theta(n(\theta^*_{g}-\theta)>v)\sim \mathbf{P}_\theta(n(\widehat{\theta}-\theta)>v)$ for any $v$ and $n\to\infty$; (3) the value of $g$ can be chosen so that the inequality $\mathbf{E}_\theta(\theta^*_{g}-\theta)^2 \mathbf{E}_\theta(\widehat{\theta}-\theta)^2$ is possible for sufficiently large $n$. Effectively no smoothness conditions are imposed on $f_\theta(x)$. With an available “auxiliary” consistent estimator $\widetilde{\theta}$, simple rules are suggested for finding estimators $\theta^*_g$ which are asymptotically equivalent to $\widehat{\theta}$. The limiting distribution of $n(\theta^*_g-\theta)$ as $n\to\infty$ is studied.
Keywords: estimators of parameters, maximum likelihood estimator, distribution with discontinuous density, change-point problem, infinitely divisible factorization.
@article{TVP_2018_63_2_a0,
     author = {A. A. Borovkov},
     title = {On estimation of parameters in the case of discontinuous densities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {211--239},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a0/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - On estimation of parameters in the case of discontinuous densities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 211
EP  - 239
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a0/
LA  - ru
ID  - TVP_2018_63_2_a0
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T On estimation of parameters in the case of discontinuous densities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 211-239
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a0/
%G ru
%F TVP_2018_63_2_a0
A. A. Borovkov. On estimation of parameters in the case of discontinuous densities. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 211-239. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a0/