Mots-clés : Fréchet maximum domain of attraction
@article{TVP_2018_63_1_a8,
author = {A. E. Mazur},
title = {Modeling and fitting of time series with heavy distribution tails and strong time dependence by {Gaussian} time series},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {186--190},
year = {2018},
volume = {63},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a8/}
}
TY - JOUR AU - A. E. Mazur TI - Modeling and fitting of time series with heavy distribution tails and strong time dependence by Gaussian time series JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 186 EP - 190 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a8/ LA - ru ID - TVP_2018_63_1_a8 ER -
%0 Journal Article %A A. E. Mazur %T Modeling and fitting of time series with heavy distribution tails and strong time dependence by Gaussian time series %J Teoriâ veroâtnostej i ee primeneniâ %D 2018 %P 186-190 %V 63 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a8/ %G ru %F TVP_2018_63_1_a8
A. E. Mazur. Modeling and fitting of time series with heavy distribution tails and strong time dependence by Gaussian time series. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 186-190. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a8/
[1] A. E. Mazur, V. I. Piterbarg, “Gaussian copula time series with heavy tails and strong time dependence”, Moscow Univ. Math. Bull., 70:5 (2015), 197–201 | DOI | MR | Zbl
[2] H. Rootzén, “Weak convergence of the tail empirical process for dependent sequences”, Stochastic Process. Appl., 119:2 (2009), 468–490 | DOI | MR | Zbl
[3] M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes, Springer Ser. Statist., Springer-Verlag, New York–Berlin, 1983, xii+336 pp. | DOI | MR | MR | Zbl | Zbl
[4] H. Drees, “Tail empirical processes under mixing conditions”, Empirical process techniques for dependent data, Birkhäuser Boston, Boston, MA, 2002, 325–342 | MR | Zbl
[5] H. Drees, “Weighted approximations of tail processes for $\beta$-mixing random variables”, Ann. Appl. Probab., 10:4 (2000), 1274–1301 | DOI | MR | Zbl
[6] H. Drees, “On smooth statistical tail functionals”, Scand. J. Statist., 25:1 (1998), 187–210 | DOI | MR | Zbl
[7] H. Drees, “A general class of estimators of the extreme value index”, J. Statist. Plann. Inference, 66:1 (1998), 95–112 | DOI | MR | Zbl
[8] V. I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Transl. Math. Monogr., 148, reprint ed., Amer. Math. Soc., Providence, RI, 2012, xii+206 pp. | MR | Zbl | Zbl
[9] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press, London, 2015, xi+167 pp. | Zbl
[10] L. De Haan, A. Ferreira, Extreme value theory. An introduction, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006, xviii+417 pp. | DOI | MR | Zbl
[11] A. E. Mazur, Modelirovanie i podgonka vremennykh ryadov s tyazhelymi khvostami raspredelenii i silnoi vremennoi zavisimostyu posredstvom gaussovskikh ryadov, Dep. VINITI, 2017