A functional central limit theorem for integrals of stationary mixing random fields
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 167-185
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove a functional central limit theorem for the integrals
$\int_W f(X(t))\, dt$, where $(X(t))_{t\in\mathbf{R}^d}$
is a stationary mixing random field and the stochastic process is indexed by the function $f$,
as the integration domain $W$ grows unboundedly in the Van Hove sense.
We also discuss properties of the covariance function  of the limiting  Gaussian process.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
functional central limit theorem, $\mathrm{GB}$-set,  Meixner system, mixing, random field.
                    
                    
                    
                  
                
                
                @article{TVP_2018_63_1_a7,
     author = {J. Kampf and E. Spodarev},
     title = {A functional central limit theorem for integrals of stationary mixing random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {167--185},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a7/}
}
                      
                      
                    TY - JOUR AU - J. Kampf AU - E. Spodarev TI - A functional central limit theorem for integrals of stationary mixing random fields JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 167 EP - 185 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a7/ LA - en ID - TVP_2018_63_1_a7 ER -
J. Kampf; E. Spodarev. A functional central limit theorem for integrals of stationary mixing random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 167-185. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a7/
