A functional central limit theorem for integrals of stationary mixing random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 167-185

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a functional central limit theorem for the integrals $\int_W f(X(t))\, dt$, where $(X(t))_{t\in\mathbf{R}^d}$ is a stationary mixing random field and the stochastic process is indexed by the function $f$, as the integration domain $W$ grows unboundedly in the Van Hove sense. We also discuss properties of the covariance function of the limiting Gaussian process.
Keywords: functional central limit theorem, $\mathrm{GB}$-set, Meixner system, mixing, random field.
@article{TVP_2018_63_1_a7,
     author = {J. Kampf and E. Spodarev},
     title = {A functional central limit theorem for integrals of stationary mixing random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {167--185},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a7/}
}
TY  - JOUR
AU  - J. Kampf
AU  - E. Spodarev
TI  - A functional central limit theorem for integrals of stationary mixing random fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 167
EP  - 185
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a7/
LA  - en
ID  - TVP_2018_63_1_a7
ER  - 
%0 Journal Article
%A J. Kampf
%A E. Spodarev
%T A functional central limit theorem for integrals of stationary mixing random fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 167-185
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a7/
%G en
%F TVP_2018_63_1_a7
J. Kampf; E. Spodarev. A functional central limit theorem for integrals of stationary mixing random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 167-185. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a7/