@article{TVP_2018_63_1_a7,
author = {J. Kampf and E. Spodarev},
title = {A functional central limit theorem for integrals of stationary mixing random fields},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {167--185},
year = {2018},
volume = {63},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a7/}
}
TY - JOUR AU - J. Kampf AU - E. Spodarev TI - A functional central limit theorem for integrals of stationary mixing random fields JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 167 EP - 185 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a7/ LA - en ID - TVP_2018_63_1_a7 ER -
J. Kampf; E. Spodarev. A functional central limit theorem for integrals of stationary mixing random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 167-185. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a7/
[1] R. J. Adler, J. E. Taylor, K. J. Worsley, Applications of random fields and geometry: foundations and case studies, in preparation, Springer Ser. Statist., Springer, Cham
[2] A. Bulinski, A. Shashkin, Limit theorems for associated random fields and related systems, Adv. Ser. Stat. Sci. Appl. Probab., 10, World Sci. Publ., Hackensack, NJ, 2007, xii+436 pp. | DOI | MR | Zbl
[3] A. Bulinski, E. Spodarev, F. Timmermann, “Central limit theorems for the excursion set volumes of weakly dependent random fields”, Bernoulli, 18:1 (2012), 100–118 | DOI | MR | Zbl
[4] A. V. Bulinskii, I. G. Zhurbenko, “A central limit theorem for additive random functions”, Theory Probab. Appl., 21:4 (1976), 687–697 | DOI | MR | Zbl
[5] J. Chilès, P. Delfiner, Geostatistics. Modeling spatial uncertainty, Wiley Ser. Probab. Statist. Appl. Probab. Statist., John Wiley Sons, Inc., New York, 1999, xii+695 pp. | DOI | MR | Zbl
[6] P. Doukhan, Mixing. Properties and examples, Lecture Notes in Statist., 85, Springer-Verlag, New York, 1994, xii+142 pp. | DOI | MR | Zbl
[7] R. M. Dudley, Real analysis and probability, The Wadsworth Brooks/Cole Math. Ser., The Wadsworth Brooks/Cole Adv. Books Software, Pacific Grove, CA, 1989, xii+436 pp. | MR | Zbl
[8] R. M. Dudley, Uniform central limit theorems, Cambridge Stud. Adv. Math., 63, Cambridge Univ. Press, Cambridge, 1999, xiv+436 pp. | DOI | MR | Zbl
[9] G. K. Eagleson, “Polynomial expansions of bivariate distributions”, Ann. Math. Statist., 35:3 (1964), 1208–1215 | DOI | MR | Zbl
[10] G. Freud, Orthogonale Polynome, Lehrbucher Monogr. Geb. Exakten Wissensch., Math. Reihe, 33, Birkhäuser Verlag, Basel–Stuttgart, 1969, 294 pp. | MR | Zbl
[11] V. V. Gorodetskii, “The central limit theorem and an invariance principle for weakly dependent random fields”, Soviet Math. Dokl., 29:3 (1984), 529–532 | MR | Zbl
[12] W. Karcher, On infinitely divisible random fields with an application in insurance, Ph.D. thesis, Ulm Univ., Ulm, 2012, 262 pp.
[13] H. O. Lancaster, “Joint probability distributions in the Meixner classes”, J. Roy. Statist. Soc. Ser. B, 37:3 (1975), 434–443 | MR | Zbl
[14] N. N. Leonenko, “The central limit theorem for homogeneous random fields and asymptotic normality of estimators of the regression coefficients”, Dopovīdī Akad. Nauk Ukraïn. RSR Ser. A, 1974, 699–702 | MR | Zbl
[15] K. Mecke, D. Stoyan (eds.), Morphology of condensed matter. Physics and geometry of spatially complex systems, Lecture Notes in Phys., 600, Springer-Verlag, Berlin–Heidelberg, 2002, vii+435 pp. | DOI
[16] D. Meschenmoser, A. Shashkin, “Functional central limit theorem for the volume of excursion sets generated by associated random fields”, Statist. Probab. Lett., 81:6 (2011), 642–646 | DOI | MR | Zbl
[17] U. Oppel, “Schwache Konvergenz kanonischer zufälliger Funktionale”, Manuscripta Math., 8:4 (1973), 323–334 | DOI | MR | Zbl
[18] B. S. Rajput, J. Rosinski, “Spectral representations of infinitely divisible processes”, Probab. Theory Related Fields, 82:3 (1989), 451–487 | DOI | MR | Zbl
[19] P. Roy, “Nonsingular group actions and stationary $S\alpha S$ random fields”, Proc. Amer. Math. Soc., 138:6 (2010), 2195–2202 | DOI | MR | Zbl
[20] R. Schneider, W. Weil, Stochastic and integral geometry, Probab. Appl. (N. Y.), Springer-Verlag, Berlin, 2008, xii+693 pp. | DOI | MR | Zbl
[21] W. Schoutens, Stochastic processes and orthogonal polynomials, Lecture Notes in Statist., 146, Springer-Verlag, New York, 2000, xiv+163 pp. | DOI | MR | Zbl
[22] E. Spodarev, “Limit theorems for excursion sets of stationary random fields”, Modern stochastics and applications, Springer Optim. Appl., 90, Springer, Cham, 2014, 221–241 | DOI | MR | Zbl
[23] L. L. Stachó, “On the volume function of parallel sets”, Acta Sci. Math. (Szeged), 38:3-4 (1976), 365–374 | MR | Zbl
[24] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., New York, 1939, ix+401 pp. | MR | Zbl | Zbl
[25] J. E. Taylor, K. J. Worsley, “Detecting sparse signals in random fields, with an application to brain mapping”, J. Amer. Statist. Assoc., 102:479 (2007), 913–928 | DOI | MR | Zbl
[26] S. Torquato, Random heterogeneous materials. Microstructure and macroscopic properties, Interdiscip. Appl. Math., 16, Springer-Verlag, New York, 2002, xxii+701 pp. | DOI | MR | Zbl
[27] H. Wackernagel, Multivariate geostatistics. An introduction with applications, 3rd rev. ed., Springer, Berlin, 2003, xv+387 pp. | Zbl