Improvements of Plachky--Steinebach theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 145-166
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the conclusion of the Plachky–Steinebach theorem holds true for
intervals of the form $]\overline{L}_r'(\lambda),y[$, where
$\overline{L}_r'(\lambda)$ is the right derivative (but not necessarily
a derivative) of the generalized $\mathrm{log}$-moment generating function
$\overline{L}$ with some $\lambda> 0$ and
$y\in\,]\overline{L}_r'(\lambda),+\infty]$, under only the following two
conditions: (a) $\overline{L}'_r(\lambda)$ is a limit point of the set
$\{\overline{L}'_r(t)\colon t>\lambda\}$, and (b) $\overline{L}(t_i)$ has
limit with $t_i$ belonging to some decreasing sequence converging to
$\sup\{t>\lambda\colon\overline{L}_{|]\lambda,t]}\ \text{is affine}\}$. By
replacing $\overline{L}_r'(\lambda)$ with $\overline{L}_r'(\lambda^+)$, the
above result extends verbatim to the case $\lambda=0$ (replacing (a) by the
right continuity of $\overline{L}$ at zero when
$\overline{L}_r'(0^+)=-\infty$). No hypothesis is made on
$\overline{L}_{]-\infty,\lambda[}$ (for example,
$\overline{L}_{]-\infty,\lambda[}$ may be the constant $+\infty$ when
$\lambda=0$); $\lambda\ge 0$ may be a nondifferentiability point
of $\overline{L}$ and, moreover, a limit point of nondifferentiability
points of $\overline{L}$; $\lambda=0$ may be a left and right discontinuity
point of $\overline{L}$. The map
$\overline{L}_{|]\lambda,\lambda+\varepsilon[}$ may fail to be strictly
convex for all $\varepsilon>0$. If we drop the assumption (b), then the same
conclusion holds with upper limits in place of limits. Furthermore, the
foregoing is valid for general nets $(\mu_\alpha,c_\alpha)$ of Borel
probability measures and powers (in place of the sequence $(\mu_n,n^{-1})$)
and replacing the intervals $]\overline{L}_r'(\lambda^+),y[$ by
$]x_\alpha,y_\alpha[$ or $[x_\alpha,y_\alpha]$, where $(x_\alpha,y_\alpha)$
is any net such that $(x_\alpha)$ converges to $\overline{L}_r'(\lambda^+)$
and $\liminf_\alpha y_\alpha>\overline{L}_r'(\lambda^+)$.
Keywords:
large deviation, $\mathrm{log}$-moment generating function, convexity, differentiability.
@article{TVP_2018_63_1_a6,
author = {H. Comman},
title = {Improvements of {Plachky--Steinebach} theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {145--166},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a6/}
}
H. Comman. Improvements of Plachky--Steinebach theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 145-166. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a6/