@article{TVP_2018_63_1_a6,
author = {H. Comman},
title = {Improvements of {Plachky{\textendash}Steinebach} theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {145--166},
year = {2018},
volume = {63},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a6/}
}
H. Comman. Improvements of Plachky–Steinebach theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 145-166. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a6/
[1] R. Aimino, S. Vaienti, “A note on the large deviations for piecewise expanding multidimensional maps”, Nonlinear dynamics new directions, Nonlinear Syst. Complex., 11, Springer, Cham, 2015, 1–10 | DOI | MR | Zbl
[2] P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, Progr. Probab. Statist., 8, Birkäuser Boston, Inc., Boston, MA, 1985, xii+283 pp. | DOI | MR | Zbl
[3] J. R. Chazottes, E. Ugalde, “Entropy estimations and fluctuations of hitting and recurrence times for Gibbsian sources”, Discrete Contin. Dyn. Syst. Ser. B, 5:3 (2005), 565–586 | DOI | MR | Zbl
[4] J.-R. Chazottes, R. Leplaideur, “Fluctuations of the $N$th return time for Axiom A diffeomorphisms”, Discrete Contin. Dyn. Syst., 13:2 (2005), 399–411 | DOI | MR | Zbl
[5] H. Comman, “Differentiability-free conditions on the free-energy function implying large deviations”, Confluentes Math., 1:2 (2009), 181–196 | DOI | MR | Zbl
[6] H. Comman, “Variational form of the large deviation functional”, Statist. Probab. Lett., 77:9 (2007), 931–936 | DOI | MR | Zbl
[7] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Appl. Math. (N. Y.), 38, 2nd ed., Springer-Verlag, New York, 1998, xvi+396 pp. | DOI | MR | Zbl
[8] H. Hennion, L. Hervé, Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Math., 1766, Springer-Verlag, Berlin, 2001, viii+145 pp. | DOI | MR | Zbl
[9] G. L. O'Brien, W. Vervaat, “Compactness in the theory of large deviations”, Stochastic Process. Appl., 57:1 (1995), 1–10 | DOI | MR | Zbl
[10] D. Plachky, J. Steinebach, “A theorem about probabilities of large deviations with an application to queuing theory”, Period. Math. Hungar., 6:4 (1975), 343–345 | DOI | MR | Zbl
[11] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, N.J., 1970, xviii+451 pp. | MR | Zbl | Zbl
[12] R. T. Rockafeller, R. J. B. Wets, Variational analysis, Grundlehren Math. Wiss., 317, 3rd printing, Springer-Verlag, Berlin, 2009, xiv+733 pp. | DOI | MR | Zbl