Improvements of Plachky–Steinebach theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 145-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the conclusion of the Plachky–Steinebach theorem holds true for intervals of the form $]\overline{L}_r'(\lambda),y[$, where $\overline{L}_r'(\lambda)$ is the right derivative (but not necessarily a derivative) of the generalized $\mathrm{log}$-moment generating function $\overline{L}$ with some $\lambda> 0$ and $y\in\,]\overline{L}_r'(\lambda),+\infty]$, under only the following two conditions: (a) $\overline{L}'_r(\lambda)$ is a limit point of the set $\{\overline{L}'_r(t)\colon t>\lambda\}$, and (b) $\overline{L}(t_i)$ has limit with $t_i$ belonging to some decreasing sequence converging to $\sup\{t>\lambda\colon\overline{L}_{|]\lambda,t]}\ \text{is affine}\}$. By replacing $\overline{L}_r'(\lambda)$ with $\overline{L}_r'(\lambda^+)$, the above result extends verbatim to the case $\lambda=0$ (replacing (a) by the right continuity of $\overline{L}$ at zero when $\overline{L}_r'(0^+)=-\infty$). No hypothesis is made on $\overline{L}_{]-\infty,\lambda[}$ (for example, $\overline{L}_{]-\infty,\lambda[}$ may be the constant $+\infty$ when $\lambda=0$); $\lambda\ge 0$ may be a nondifferentiability point of $\overline{L}$ and, moreover, a limit point of nondifferentiability points of $\overline{L}$; $\lambda=0$ may be a left and right discontinuity point of $\overline{L}$. The map $\overline{L}_{|]\lambda,\lambda+\varepsilon[}$ may fail to be strictly convex for all $\varepsilon>0$. If we drop the assumption (b), then the same conclusion holds with upper limits in place of limits. Furthermore, the foregoing is valid for general nets $(\mu_\alpha,c_\alpha)$ of Borel probability measures and powers (in place of the sequence $(\mu_n,n^{-1})$) and replacing the intervals $]\overline{L}_r'(\lambda^+),y[$ by $]x_\alpha,y_\alpha[$ or $[x_\alpha,y_\alpha]$, where $(x_\alpha,y_\alpha)$ is any net such that $(x_\alpha)$ converges to $\overline{L}_r'(\lambda^+)$ and $\liminf_\alpha y_\alpha>\overline{L}_r'(\lambda^+)$.
Keywords: large deviation, $\mathrm{log}$-moment generating function, convexity, differentiability.
@article{TVP_2018_63_1_a6,
     author = {H. Comman},
     title = {Improvements of {Plachky{\textendash}Steinebach} theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {145--166},
     year = {2018},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a6/}
}
TY  - JOUR
AU  - H. Comman
TI  - Improvements of Plachky–Steinebach theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 145
EP  - 166
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a6/
LA  - en
ID  - TVP_2018_63_1_a6
ER  - 
%0 Journal Article
%A H. Comman
%T Improvements of Plachky–Steinebach theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 145-166
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a6/
%G en
%F TVP_2018_63_1_a6
H. Comman. Improvements of Plachky–Steinebach theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 145-166. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a6/

[1] R. Aimino, S. Vaienti, “A note on the large deviations for piecewise expanding multidimensional maps”, Nonlinear dynamics new directions, Nonlinear Syst. Complex., 11, Springer, Cham, 2015, 1–10 | DOI | MR | Zbl

[2] P. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, Progr. Probab. Statist., 8, Birkäuser Boston, Inc., Boston, MA, 1985, xii+283 pp. | DOI | MR | Zbl

[3] J. R. Chazottes, E. Ugalde, “Entropy estimations and fluctuations of hitting and recurrence times for Gibbsian sources”, Discrete Contin. Dyn. Syst. Ser. B, 5:3 (2005), 565–586 | DOI | MR | Zbl

[4] J.-R. Chazottes, R. Leplaideur, “Fluctuations of the $N$th return time for Axiom A diffeomorphisms”, Discrete Contin. Dyn. Syst., 13:2 (2005), 399–411 | DOI | MR | Zbl

[5] H. Comman, “Differentiability-free conditions on the free-energy function implying large deviations”, Confluentes Math., 1:2 (2009), 181–196 | DOI | MR | Zbl

[6] H. Comman, “Variational form of the large deviation functional”, Statist. Probab. Lett., 77:9 (2007), 931–936 | DOI | MR | Zbl

[7] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Appl. Math. (N. Y.), 38, 2nd ed., Springer-Verlag, New York, 1998, xvi+396 pp. | DOI | MR | Zbl

[8] H. Hennion, L. Hervé, Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Math., 1766, Springer-Verlag, Berlin, 2001, viii+145 pp. | DOI | MR | Zbl

[9] G. L. O'Brien, W. Vervaat, “Compactness in the theory of large deviations”, Stochastic Process. Appl., 57:1 (1995), 1–10 | DOI | MR | Zbl

[10] D. Plachky, J. Steinebach, “A theorem about probabilities of large deviations with an application to queuing theory”, Period. Math. Hungar., 6:4 (1975), 343–345 | DOI | MR | Zbl

[11] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, N.J., 1970, xviii+451 pp. | MR | Zbl | Zbl

[12] R. T. Rockafeller, R. J. B. Wets, Variational analysis, Grundlehren Math. Wiss., 317, 3rd printing, Springer-Verlag, Berlin, 2009, xiv+733 pp. | DOI | MR | Zbl