Poisson statistics of eigenvalues in the hierarchical Dyson model
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 117-144

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,d)$ be a locally compact separable ultrametric space. Given a measure $m$ on $X$ and a function $C$ defined on the set $\mathcal{B}$ of all balls $B\subset X$, we consider the hierarchical Laplacian $L=L_{C}$. The operator $L$ acts in $L^{2}(X,m)$, is essentially self-adjoint, and has a purely point spectrum. Choosing a family $\{\varepsilon(B)\}_{B\in \mathcal{B}}$ of i.i.d. random variables, we define the perturbed function $\mathcal{C}(B)=C(B)(1+\varepsilon(B))$ and the perturbed hierarchical Laplacian $\mathcal{L}=L_{\mathcal{C}}$. All outcomes of the perturbed operator $\mathcal{L}$ are hierarchical Laplacians. In particular they all have purely point spectrum. We study the empirical point process $M$ defined in terms of $\mathcal{L}$-eigenvalues. Under some natural assumptions, $M$ can be approximated by a Poisson point process. Using a result of Arratia, Goldstein, and Gordon based on the Chen–Stein method, we provide total variation convergence rates for the Poisson approximation. We apply our theory to random perturbations of the operator $\mathfrak{D}^{\alpha }$, the $p$-adic fractional derivative of order $\alpha >0$.
Keywords: hierarchical Laplacian, ultrametric measure space, field of $p$-adic numbers, fractional derivative, point spectrum, integrated density of states, Stein's method.
Mots-clés : Poisson approximation
@article{TVP_2018_63_1_a5,
     author = {A. Bendikov and A. Braverman and J. Pike},
     title = {Poisson statistics of eigenvalues in the hierarchical {Dyson} model},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {117--144},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/}
}
TY  - JOUR
AU  - A. Bendikov
AU  - A. Braverman
AU  - J. Pike
TI  - Poisson statistics of eigenvalues in the hierarchical Dyson model
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 117
EP  - 144
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/
LA  - en
ID  - TVP_2018_63_1_a5
ER  - 
%0 Journal Article
%A A. Bendikov
%A A. Braverman
%A J. Pike
%T Poisson statistics of eigenvalues in the hierarchical Dyson model
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 117-144
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/
%G en
%F TVP_2018_63_1_a5
A. Bendikov; A. Braverman; J. Pike. Poisson statistics of eigenvalues in the hierarchical Dyson model. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 117-144. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/