Mots-clés : Poisson approximation
@article{TVP_2018_63_1_a5,
author = {A. Bendikov and A. Braverman and J. Pike},
title = {Poisson statistics of eigenvalues in the hierarchical {Dyson} model},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {117--144},
year = {2018},
volume = {63},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/}
}
TY - JOUR AU - A. Bendikov AU - A. Braverman AU - J. Pike TI - Poisson statistics of eigenvalues in the hierarchical Dyson model JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 117 EP - 144 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/ LA - en ID - TVP_2018_63_1_a5 ER -
A. Bendikov; A. Braverman; J. Pike. Poisson statistics of eigenvalues in the hierarchical Dyson model. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 117-144. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/
[1] J. A. Adell, P. Jodrá, “Exact Kolmogorov and total variation distances between some familiar discrete distributions”, J. Inequal. Appl., 2006 (2006), 64307, 8 pp. | DOI | MR | Zbl
[2] M. Aizenman, S. Molchanov, “Localization at large disorder and at extreme energies: an elementary derivation”, Comm. Math. Phys., 157:2 (1993), 245–278 | DOI | MR | Zbl
[3] S. Albeverio, W. Karwowski, “A random walk on $p$-adics – the generator and its spectrum”, Stochastic Process. Appl., 53:1 (1994), 1–22 | DOI | MR | Zbl
[4] R. Arratia, L. Goldstein, L. Gordon, “Two moments suffice for Poisson approximations: the Chen–Stein method”, Ann. Probab., 17:1 (1989), 9–25 | DOI | MR | Zbl
[5] R. Arratia, L. Goldstein, L. Gordon, “Poisson approximation and the Chen–Stein method”, With comments and a rejoinder by the authors, Statist. Sci., 5:4 (1990), 403–434 | DOI | MR | Zbl
[6] A. D. Barbour, L. Holst, S. Janson, Poisson approximation, Oxford Stud. Probab., 2, The Clarendon Press, Oxford Univ. Press, New York, 1992, x+277 pp. | MR | Zbl
[7] A. D. Bendikov, A. A. Grigor'yan, S. A. Molchanov, G. P. Samorodnitsky, “On a class of random perturbations of the hierarchical Laplacian”, Izv. Math., 79:5 (2015), 859–893 | DOI | DOI | MR | Zbl
[8] A. Bendikov, A. Grigor'yan, C. Pittet, “On a class of Markov semigroups on discrete ultra-metric spaces”, Potential Anal., 37:2 (2012), 125–169 | DOI | MR | Zbl
[9] A. D. Bendikov, A. A. Grigor'yan, C. Pittet, W. Woess, “Isotropic Markov semigroups on ultra-metric spaces”, Russian Math. Surveys, 69:4 (2014), 589–680 | DOI | DOI | MR | Zbl
[10] A. Bendikov, P. Krupski, “On the spectrum of the hierarchical Laplacian”, Potential Anal., 41:4 (2014), 1247–1266 | DOI | MR | Zbl
[11] A. Bovier, “The density of states in the Anderson model at weak disorder: a renormalization group analysis of the hierarchical model”, J. Statist. Phys., 59:3-4 (1990), 745–779 | DOI | MR | Zbl
[12] P. Cartier, “Fonctions harmoniques sur un arbre”, Convegno di Calcolo delle Probabilità, INDAM (Rome, 1971), Sympos. Math., IX, Academic Press, London, 1972, 203–270 | MR | Zbl
[13] S. Chatterjee, P. Diaconis, E. Meckes, “Exchangeable pairs and Poisson approximation”, Probab. Surv., 2 (2005), 64–106 | DOI | MR | Zbl
[14] M. Del Muto, A. Figà-Talamanca, “Diffusion on locally compact ultrametric spaces”, Expo. Math., 22:3 (2004), 197–211 | DOI | MR | Zbl
[15] M. Del Muto, A. Figà-Talamanca, “Anisotropic diffusion on totally disconnected abelian groups”, Pacific J. Math., 225:2 (2006), 221–229 | DOI | MR | Zbl
[16] R. Durrett, Probability: theory and examples, Camb. Ser. Stat. Probab. Math., 31, 4th ed., Cambridge Univ. Press, Cambridge, 2010, x+428 pp. | DOI | MR | Zbl
[17] F. J. Dyson, “The dynamics of a disordered linear chain”, Phys. Rev. (2), 92 (1953), 1331–1338 | DOI | MR | Zbl
[18] F. J. Dyson, “Existence of a phase-transition in a one-dimensional Ising ferromagnet”, Comm. Math. Phys., 12:2 (1969), 91–107 | DOI | MR | Zbl
[19] C. C. Graham, O. C. McGehee, Essays in commutative harmonic analysis, Grundlehren Math. Wiss., 238, Springer-Verlag, New York-Berlin, 1979, xxi+464 pp. | DOI | MR | Zbl
[20] I. A. Ibragimov, Y. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl
[21] A. N. Kochubei, Pseudo-differential equations and stochastics over non-Archimedean fields, Monogr. Textbooks Pure Appl. Math., 244, Marcel Dekker, Inc., New York, 2001, xii+316 pp. | DOI | MR | Zbl
[22] S. V. Kozyrev, “Wavelets and spectral analysis of ultrametric pseudodifferential operators”, Sb. Math., 198:1 (2007), 97–116 | DOI | DOI | MR | Zbl
[23] E. Kritchevski, “Hierarchical Anderson model”, Probability and mathematical physics, CRM Proc. Lecture Notes, 42, Amer. Math. Soc., Providence, RI, 2007, 309–322 | DOI | MR | Zbl
[24] E. Kritchevski, “Spectral localization in the hierarchical Anderson model”, Proc. Amer. Math. Soc., 135:5 (2007), 1431–1440 | DOI | MR | Zbl
[25] E. Kritchevski, “Poisson statistics of eigenvalues in the hierarchical Anderson model”, Ann. Henri Poincaré, 9:4 (2008), 685–709 | DOI | MR | Zbl
[26] D. Krutikov, “On an essential spectrum of the random $p$-adic Schrödinger-type operator in the Anderson model”, Lett. Math. Phys., 57:2 (2001), 83–86 | DOI | MR | Zbl
[27] D. Krutikov, “Spectra of $p$-adic Schrödinger-type operators with random radial potentials”, J. Phys. A, 36:15 (2003), 4433–4443 | DOI | MR | Zbl
[28] M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes, Springer Ser. Statist., Springer-Verlag, New York–Berlin, 1983, xii+336 pp. | DOI | MR | MR | Zbl | Zbl
[29] E. Lukacs, Characteristic functions, 2nd ed., rev. and enl., Hafner Publishing Co., New York, 1970, x+350 pp. | MR | MR | Zbl | Zbl
[30] N. Minami, “Local fluctuation of the spectrum of a multidimensional Anderson tight binding model”, Comm. Math. Phys., 177:3 (1996), 709–725 | DOI | MR | Zbl
[31] S. Molchanov, “Hierarchical random matrices and operators. Application to Anderson model”, Multidimensional statistical analysis and theory of random matrices (Bowling Green, OH, 1996), VSP, Utrecht, 1996, 179–194 | MR | Zbl
[32] J. Pearson, J. Bellissard, “Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets”, J. Noncommut. Geom., 3:3 (2009), 447–480 | DOI | MR | Zbl
[33] Y. Peres, W. Schlag, B. Solomyak, “Sixty years of Bernoulli convolutions”, Fractal geometry and stochastics II (Greifswald/Koserow, 1998), Progr. Probab., 46, Birkhäuser, Basel, 2000, 39–65 | DOI | MR | Zbl
[34] Y. Peres, B. Solomyak, “Absolute continuity of Bernoulli convolutions, a simple proof”, Math. Res. Lett., 3:2 (1996), 231–239 | DOI | MR | Zbl
[35] N. Ross, “Fundamentals of Stein's method”, Probab. Surv., 8 (2011), 210–293 | DOI | MR | Zbl
[36] B. Solomyak, “On the random series {$\sum\pm\lambda^n$} (an Erdős problem)”, Ann. of Math. (2), 142:3 (1995), 611–625 | DOI | MR | Zbl
[37] B. Solomyak, “Notes on Bernoulli convolutions”, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Proc. Sympos. Pure Math., 72, Part 1, Amer. Math. Soc., Providence, RI, 2004, 207–230 | DOI | MR | Zbl
[38] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1975, xii+294 pp. | MR | Zbl
[39] V. S. Vladimirov, “Generalized functions over the field of $p$-adic numbers”, Russian Math. Surveys, 43:5 (1988), 19–64 | DOI | MR | Zbl
[40] V. S. Vladimirov, I. V. Volovich, “$p$-adic Schrödinger-type equation”, Lett. Math. Phys., 18:1 (1989), 43–53 | DOI | MR | Zbl
[41] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Sci. Publ., River Edge, NJ, 1994, xx+319 pp. | DOI | MR | MR | Zbl | Zbl
[42] W. Woess, Denumerable Markov chains. Generating functions, boundary theory, random walks on trees, EMS Textbk. Math., Eur. Math. Soc. (EMS), Zürich, 2009, xviii+351 pp. | DOI | MR | Zbl