Poisson statistics of eigenvalues in the hierarchical Dyson model
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 117-144
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(X,d)$ be a locally compact separable ultrametric space.
Given a measure $m$ on $X$ and a function $C$ defined on the set $\mathcal{B}$ of
all balls $B\subset X$, we consider the hierarchical Laplacian $L=L_{C}$.
The operator $L$ acts in $L^{2}(X,m)$, is essentially self-adjoint, and has
a purely point spectrum. Choosing a family $\{\varepsilon(B)\}_{B\in \mathcal{B}}$
of i.i.d. random variables, we define the perturbed function
$\mathcal{C}(B)=C(B)(1+\varepsilon(B))$ and the perturbed hierarchical Laplacian
$\mathcal{L}=L_{\mathcal{C}}$.
All outcomes of the perturbed operator $\mathcal{L}$
are hierarchical Laplacians. In particular they all have purely
point spectrum. We study the empirical point process $M$ defined in terms of $\mathcal{L}$-eigenvalues.
Under some natural assumptions, $M$ can be approximated
by a Poisson point process. Using a result of Arratia, Goldstein,
and Gordon based on the Chen–Stein method, we provide total variation convergence
rates for the Poisson approximation.
We apply our theory to random
perturbations of the operator $\mathfrak{D}^{\alpha }$, the $p$-adic
fractional derivative of order $\alpha >0$.
Keywords:
hierarchical Laplacian, ultrametric measure space, field of $p$-adic numbers, fractional derivative, point spectrum, integrated density of states, Stein's method.
Mots-clés : Poisson approximation
Mots-clés : Poisson approximation
@article{TVP_2018_63_1_a5,
author = {A. Bendikov and A. Braverman and J. Pike},
title = {Poisson statistics of eigenvalues in the hierarchical {Dyson} model},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {117--144},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/}
}
TY - JOUR AU - A. Bendikov AU - A. Braverman AU - J. Pike TI - Poisson statistics of eigenvalues in the hierarchical Dyson model JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 117 EP - 144 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/ LA - en ID - TVP_2018_63_1_a5 ER -
A. Bendikov; A. Braverman; J. Pike. Poisson statistics of eigenvalues in the hierarchical Dyson model. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 117-144. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/