Poisson statistics of eigenvalues in the hierarchical Dyson model
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 117-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(X,d)$ be a locally compact separable ultrametric space. Given a measure $m$ on $X$ and a function $C$ defined on the set $\mathcal{B}$ of all balls $B\subset X$, we consider the hierarchical Laplacian $L=L_{C}$. The operator $L$ acts in $L^{2}(X,m)$, is essentially self-adjoint, and has a purely point spectrum. Choosing a family $\{\varepsilon(B)\}_{B\in \mathcal{B}}$ of i.i.d. random variables, we define the perturbed function $\mathcal{C}(B)=C(B)(1+\varepsilon(B))$ and the perturbed hierarchical Laplacian $\mathcal{L}=L_{\mathcal{C}}$. All outcomes of the perturbed operator $\mathcal{L}$ are hierarchical Laplacians. In particular they all have purely point spectrum. We study the empirical point process $M$ defined in terms of $\mathcal{L}$-eigenvalues. Under some natural assumptions, $M$ can be approximated by a Poisson point process. Using a result of Arratia, Goldstein, and Gordon based on the Chen–Stein method, we provide total variation convergence rates for the Poisson approximation. We apply our theory to random perturbations of the operator $\mathfrak{D}^{\alpha }$, the $p$-adic fractional derivative of order $\alpha >0$.
Keywords: hierarchical Laplacian, ultrametric measure space, field of $p$-adic numbers, fractional derivative, point spectrum, integrated density of states, Stein's method.
Mots-clés : Poisson approximation
@article{TVP_2018_63_1_a5,
     author = {A. Bendikov and A. Braverman and J. Pike},
     title = {Poisson statistics of eigenvalues in the hierarchical {Dyson} model},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {117--144},
     year = {2018},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/}
}
TY  - JOUR
AU  - A. Bendikov
AU  - A. Braverman
AU  - J. Pike
TI  - Poisson statistics of eigenvalues in the hierarchical Dyson model
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 117
EP  - 144
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/
LA  - en
ID  - TVP_2018_63_1_a5
ER  - 
%0 Journal Article
%A A. Bendikov
%A A. Braverman
%A J. Pike
%T Poisson statistics of eigenvalues in the hierarchical Dyson model
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 117-144
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/
%G en
%F TVP_2018_63_1_a5
A. Bendikov; A. Braverman; J. Pike. Poisson statistics of eigenvalues in the hierarchical Dyson model. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 117-144. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a5/

[1] J. A. Adell, P. Jodrá, “Exact Kolmogorov and total variation distances between some familiar discrete distributions”, J. Inequal. Appl., 2006 (2006), 64307, 8 pp. | DOI | MR | Zbl

[2] M. Aizenman, S. Molchanov, “Localization at large disorder and at extreme energies: an elementary derivation”, Comm. Math. Phys., 157:2 (1993), 245–278 | DOI | MR | Zbl

[3] S. Albeverio, W. Karwowski, “A random walk on $p$-adics – the generator and its spectrum”, Stochastic Process. Appl., 53:1 (1994), 1–22 | DOI | MR | Zbl

[4] R. Arratia, L. Goldstein, L. Gordon, “Two moments suffice for Poisson approximations: the Chen–Stein method”, Ann. Probab., 17:1 (1989), 9–25 | DOI | MR | Zbl

[5] R. Arratia, L. Goldstein, L. Gordon, “Poisson approximation and the Chen–Stein method”, With comments and a rejoinder by the authors, Statist. Sci., 5:4 (1990), 403–434 | DOI | MR | Zbl

[6] A. D. Barbour, L. Holst, S. Janson, Poisson approximation, Oxford Stud. Probab., 2, The Clarendon Press, Oxford Univ. Press, New York, 1992, x+277 pp. | MR | Zbl

[7] A. D. Bendikov, A. A. Grigor'yan, S. A. Molchanov, G. P. Samorodnitsky, “On a class of random perturbations of the hierarchical Laplacian”, Izv. Math., 79:5 (2015), 859–893 | DOI | DOI | MR | Zbl

[8] A. Bendikov, A. Grigor'yan, C. Pittet, “On a class of Markov semigroups on discrete ultra-metric spaces”, Potential Anal., 37:2 (2012), 125–169 | DOI | MR | Zbl

[9] A. D. Bendikov, A. A. Grigor'yan, C. Pittet, W. Woess, “Isotropic Markov semigroups on ultra-metric spaces”, Russian Math. Surveys, 69:4 (2014), 589–680 | DOI | DOI | MR | Zbl

[10] A. Bendikov, P. Krupski, “On the spectrum of the hierarchical Laplacian”, Potential Anal., 41:4 (2014), 1247–1266 | DOI | MR | Zbl

[11] A. Bovier, “The density of states in the Anderson model at weak disorder: a renormalization group analysis of the hierarchical model”, J. Statist. Phys., 59:3-4 (1990), 745–779 | DOI | MR | Zbl

[12] P. Cartier, “Fonctions harmoniques sur un arbre”, Convegno di Calcolo delle Probabilità, INDAM (Rome, 1971), Sympos. Math., IX, Academic Press, London, 1972, 203–270 | MR | Zbl

[13] S. Chatterjee, P. Diaconis, E. Meckes, “Exchangeable pairs and Poisson approximation”, Probab. Surv., 2 (2005), 64–106 | DOI | MR | Zbl

[14] M. Del Muto, A. Figà-Talamanca, “Diffusion on locally compact ultrametric spaces”, Expo. Math., 22:3 (2004), 197–211 | DOI | MR | Zbl

[15] M. Del Muto, A. Figà-Talamanca, “Anisotropic diffusion on totally disconnected abelian groups”, Pacific J. Math., 225:2 (2006), 221–229 | DOI | MR | Zbl

[16] R. Durrett, Probability: theory and examples, Camb. Ser. Stat. Probab. Math., 31, 4th ed., Cambridge Univ. Press, Cambridge, 2010, x+428 pp. | DOI | MR | Zbl

[17] F. J. Dyson, “The dynamics of a disordered linear chain”, Phys. Rev. (2), 92 (1953), 1331–1338 | DOI | MR | Zbl

[18] F. J. Dyson, “Existence of a phase-transition in a one-dimensional Ising ferromagnet”, Comm. Math. Phys., 12:2 (1969), 91–107 | DOI | MR | Zbl

[19] C. C. Graham, O. C. McGehee, Essays in commutative harmonic analysis, Grundlehren Math. Wiss., 238, Springer-Verlag, New York-Berlin, 1979, xxi+464 pp. | DOI | MR | Zbl

[20] I. A. Ibragimov, Y. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl

[21] A. N. Kochubei, Pseudo-differential equations and stochastics over non-Archimedean fields, Monogr. Textbooks Pure Appl. Math., 244, Marcel Dekker, Inc., New York, 2001, xii+316 pp. | DOI | MR | Zbl

[22] S. V. Kozyrev, “Wavelets and spectral analysis of ultrametric pseudodifferential operators”, Sb. Math., 198:1 (2007), 97–116 | DOI | DOI | MR | Zbl

[23] E. Kritchevski, “Hierarchical Anderson model”, Probability and mathematical physics, CRM Proc. Lecture Notes, 42, Amer. Math. Soc., Providence, RI, 2007, 309–322 | DOI | MR | Zbl

[24] E. Kritchevski, “Spectral localization in the hierarchical Anderson model”, Proc. Amer. Math. Soc., 135:5 (2007), 1431–1440 | DOI | MR | Zbl

[25] E. Kritchevski, “Poisson statistics of eigenvalues in the hierarchical Anderson model”, Ann. Henri Poincaré, 9:4 (2008), 685–709 | DOI | MR | Zbl

[26] D. Krutikov, “On an essential spectrum of the random $p$-adic Schrödinger-type operator in the Anderson model”, Lett. Math. Phys., 57:2 (2001), 83–86 | DOI | MR | Zbl

[27] D. Krutikov, “Spectra of $p$-adic Schrödinger-type operators with random radial potentials”, J. Phys. A, 36:15 (2003), 4433–4443 | DOI | MR | Zbl

[28] M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes, Springer Ser. Statist., Springer-Verlag, New York–Berlin, 1983, xii+336 pp. | DOI | MR | MR | Zbl | Zbl

[29] E. Lukacs, Characteristic functions, 2nd ed., rev. and enl., Hafner Publishing Co., New York, 1970, x+350 pp. | MR | MR | Zbl | Zbl

[30] N. Minami, “Local fluctuation of the spectrum of a multidimensional Anderson tight binding model”, Comm. Math. Phys., 177:3 (1996), 709–725 | DOI | MR | Zbl

[31] S. Molchanov, “Hierarchical random matrices and operators. Application to Anderson model”, Multidimensional statistical analysis and theory of random matrices (Bowling Green, OH, 1996), VSP, Utrecht, 1996, 179–194 | MR | Zbl

[32] J. Pearson, J. Bellissard, “Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets”, J. Noncommut. Geom., 3:3 (2009), 447–480 | DOI | MR | Zbl

[33] Y. Peres, W. Schlag, B. Solomyak, “Sixty years of Bernoulli convolutions”, Fractal geometry and stochastics II (Greifswald/Koserow, 1998), Progr. Probab., 46, Birkhäuser, Basel, 2000, 39–65 | DOI | MR | Zbl

[34] Y. Peres, B. Solomyak, “Absolute continuity of Bernoulli convolutions, a simple proof”, Math. Res. Lett., 3:2 (1996), 231–239 | DOI | MR | Zbl

[35] N. Ross, “Fundamentals of Stein's method”, Probab. Surv., 8 (2011), 210–293 | DOI | MR | Zbl

[36] B. Solomyak, “On the random series {$\sum\pm\lambda^n$} (an Erdős problem)”, Ann. of Math. (2), 142:3 (1995), 611–625 | DOI | MR | Zbl

[37] B. Solomyak, “Notes on Bernoulli convolutions”, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Proc. Sympos. Pure Math., 72, Part 1, Amer. Math. Soc., Providence, RI, 2004, 207–230 | DOI | MR | Zbl

[38] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1975, xii+294 pp. | MR | Zbl

[39] V. S. Vladimirov, “Generalized functions over the field of $p$-adic numbers”, Russian Math. Surveys, 43:5 (1988), 19–64 | DOI | MR | Zbl

[40] V. S. Vladimirov, I. V. Volovich, “$p$-adic Schrödinger-type equation”, Lett. Math. Phys., 18:1 (1989), 43–53 | DOI | MR | Zbl

[41] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Sci. Publ., River Edge, NJ, 1994, xx+319 pp. | DOI | MR | MR | Zbl | Zbl

[42] W. Woess, Denumerable Markov chains. Generating functions, boundary theory, random walks on trees, EMS Textbk. Math., Eur. Math. Soc. (EMS), Zürich, 2009, xviii+351 pp. | DOI | MR | Zbl