Keywords: geometric random sum, compound Poisson distribution, central limit theorem (CLT), convergence rate estimate, normal approximation, Berry–Esseen inequality, asymptotically exact constant.
@article{TVP_2018_63_1_a4,
author = {I. G. Shevtsova},
title = {Convergence rate estimates in the global {CLT} for compound mixed {Poisson} distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {89--116},
year = {2018},
volume = {63},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a4/}
}
I. G. Shevtsova. Convergence rate estimates in the global CLT for compound mixed Poisson distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 89-116. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a4/
[1] R. P. Agnew, “Global versions of the central limit theorem”, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 800–804 | DOI | MR | Zbl
[2] R. P. Agnew, “Estimates for global central limit theorems”, Ann. Math. Statist., 28 (1957), 26–42 | DOI | MR | Zbl
[3] A. D. Barbour, P. Hall, “On the rate of Poisson convergence”, Math. Proc. Cambridge Philos. Soc., 95:3 (1984), 473–480 | DOI | MR | Zbl
[4] A. D. Barbour, L. Holst, S. Janson, Poisson approximation, Oxford Stud. Probab., 2, The Clarendon Press, Oxford Univ. Press, New York, 1992, x+277 pp. | MR | Zbl
[5] Kh. Batirov, D. V. Manevich, S. V. Nagaev, “The Esseen inequality for sums of a random number of differently distributed random variables”, Math. Notes, 22:1 (1977), 569–571 | DOI | MR | Zbl
[6] V. E. Bening, V. Yu. Korolev, Generalized Poisson models and their applications in insurance and finance, Mod. Probab. Stat., VSP, Utrecht, 2002, xix+434 pp. | DOI | Zbl
[7] S. G. Bobkov, “Proximity of probability distributions in terms of Fourier–Stieltjes transforms”, Russian Math. Surveys, 71:6 (2016), 1021–1079 | DOI | DOI | MR | Zbl
[8] V. Čekanavičius, B. Roos, “An expansion in the exponent for compound binomial approximations”, Liet. Mat. Rink., 46:1 (2006), 67–110 | MR | Zbl
[9] N. Chaidee, K. Neammanee, “Berry–Esseen bound for independent random sum via Stein's method”, Int. Math. Forum, 3:13-16 (2008), 721–738 | MR | Zbl
[10] N. Chaidee, M. Tuntapthai, “Berry–Esseen bounds for random sums of non-i.i.d. random variables”, Int. Math. Forum, 4:25-28 (2009), 1281–1288 | MR | Zbl
[11] L. H. Y. Chen, “On the convergence of Poisson binomial to Poisson distributions”, Ann. Probab., 2:1 (1974), 178–180 | DOI | MR | Zbl
[12] R. von Chossy, G. Rappl, “Some approximation methods for the distribution of random sums”, Insurance Math. Econom., 2:4 (1983), 251–270 | DOI | MR | Zbl
[13] P. Deheuvels, D. Pfeifer, “A semigroup approach to Poisson approximation”, Ann. Probab., 14:2 (1986), 663–676 | DOI | MR | Zbl
[14] P. Deheuvels, D. Pfeifer, “Operator semigroups and Poisson convergence in selected metrics”, Semigroup Forum, 34:2 (1986), 203–224 | DOI | MR | Zbl
[15] P. Deheuvels, D. Pfeifer, “On a relationship between Uspensky's theorem and Poisson approximations”, Ann. Inst. Statist. Math., 40:4 (1988), 671–681 | DOI | MR | Zbl
[16] M. Denuit, J. Dhaene, M. Goovaerts, R. Kaas, Actuarial theory for dependent risks. Measures, orders and models, John Wiley Sons, Ltd., Chichester, UK, 2005, xviii+440 pp. | DOI
[17] C. Döbler, On rates of convergence and Berry–Esseen bounds for random sums of centered random variables with finite third moments, arXiv: 1212.5401
[18] C. Döbler, “New Berry–Esseen and Wasserstein bounds in the CLT for non-randomly centered random sums by probabilistic methods”, ALEA Lat. Am. J. Probab. Math. Stat., 12:2 (2015), 863–902 | MR | Zbl
[19] W. Doeblin, “Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d'états”, Rev. Math. Union Interbalkanique, 2 (1938), 77–105 | Zbl
[20] N. Elezović, C. Giordano, J. Pečarić, “The best bounds in Gautschi's inequality”, Math. Inequal. Appl., 3:2 (2000), 239–252 | DOI | MR | Zbl
[21] G. Englund, “A remainder term estimate in a random-sum central limit theorem”, Teoriya veroyatn. i ee primen., 28:1 (1983), 143–149 ; Theory Probab. Appl., 28:1 (1984), 149–157 | MR | Zbl | DOI
[22] R. E. Gaunt, “Inequalities for modified Bessel functions and their integrals”, J. Math. Anal. Appl., 420:1 (2014), 373–386 | DOI | MR | Zbl
[23] W. Gautschi, “Some elementary inequalities relating to the gamma and incomplete gamma function”, J. Math. and Phys., 38 (1959), 77–81 | DOI | MR | Zbl
[24] S. V. Gavrilenko, “Otsenki skorosti skhodimosti raspredelenii sluchainykh summ s bezgranichno delimymi indeksami k normalnomu zakonu”, Inform. i ee primen., 4:4 (2010), 80–87
[25] S. V. Gavrilenko, “Utochnenie neravnomernoi otsenki skorosti skhodimosti raspredelenii puassonovskikh sluchainykh summ k normalnomu zakonu”, Inform. i ee primen., 5:1 (2011), 12–24
[26] S. V. Gavrilenko, V. Yu. Korolev, “Otsenki skorosti skhodimosti smeshannykh puassonovskikh sluchainykh summ”, Sistemy i sredstva inform., 2006, spets. vypusk, “Matematicheskie modeli v informatsionnykh tekhnologiyakh”, 248–257
[27] B. V. Gnedenko, V. Yu. Korolev, Random summation. Limit theorems and applications, CRC Press, Boca Raton, FL, 1996, viii+267 pp. | MR | Zbl
[28] I. S. Gradshteyn, I. M. Ryzhik, “Table of integrals, series, and products”, 5th ed., Academic Press, Inc., Boston, MA, 1994, xlviii+1204 pp. | MR | MR | Zbl | Zbl
[29] J. Grandell, Doubly stochastic Poisson processes, Lecture Notes in Math., 529, Springer-Verlag, Berlin–New York, 1976, x+234 pp. | DOI | MR | Zbl
[30] J. Grandell, Mixed Poisson processes, Monogr. Statist. Appl. Probab., 77, Chapman Hall, London, 1997, xii+268 pp. | MR | Zbl
[31] J. Kerstan, “Verallgemeinerung eines Satzes von Prochorow und Le Cam”, Z. Wahrscheinlichkeitstheor. verw. Geb., 2:3 (1964), 173–179 | DOI | MR | Zbl
[32] A. Khintchine, Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Ergeb. Math. Grenzgeb., 2, no. 4, Springer–Verlag, Berlin, 1933, iv+77 pp. | DOI | Zbl
[33] V. Yu. Korolev, “On the accuracy of normal approximation for the distributions of sums of a random number of independent random variables”, Theory Probab. Appl., 33:3 (1988), 540–544 | DOI | MR | Zbl
[34] V. Yu. Korolev, “A general theorem on the limit behavior of superpositions of independent random processes with applications to Cox processes”, J. Math. Sci., 81:5 (1996), 2951–2956 | DOI | MR | Zbl
[35] V. Yu. Korolev, V. E. Bening, S. Ya. Shorgin, Matematicheskie osnovy teorii riska, Fizmatlit, M., 2007, 544 pp. | Zbl
[36] V. Korolev, A. Dorofeeva, “Bounds of the accuracy of the normal approximation to the distributions of random sums under relaxed moment conditions”, Lith. Math. J., 57:1 (2017), 38–58 | DOI | MR | Zbl
[37] V. Korolev, I. Shevtsova, “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scand. Actuar. J., 2012:2 (2012), 81–105 | DOI | MR | Zbl
[38] V. M. Kruglov, V. Yu. Korolev, Predelnye teoremy dlya sluchainykh summ, MGU, M., 1990, 270 pp. | MR | Zbl
[39] L. Le Cam, “An approximation theorem for the Poisson binomial distribution”, Pacific J. Math., 10:4 (1960), 1181–1197 | DOI | MR | Zbl
[40] L. Le Cam, “On the distribution of sums of independent random variables”, Bernoulli, Bayes, Laplace (anniversary volume) (Statist. Lab., Univ. California, Berkeley, CA, 1963), Springer-Verlag, New York, 1965, 179–202 | MR | Zbl
[41] T. Lindvall, Lectures on the coupling method, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., John Wiley Sons, Inc., New York, 1992, xiv+257 pp. | MR | Zbl
[42] R. Michel, “An improved error bound for the compound Poisson approximation of a nearly homogeneous portfolio”, ASTIN Bull., 17:2 (1987), 165–169 | DOI
[43] R. Michel, “On Berry–Esseen results for the compound Poisson distribution”, Insurance Math. Econom., 13:1 (1993), 35–37 | DOI | MR | Zbl
[44] S. Yu. Novak, Predelnye teoremy i otsenki skorosti skhodimosti v teorii ekstremalnykh znachenii, Diss. ... dokt. fiz.-matem. nauk, Midlsekskii un-t, SPb., 2014, 230 pp.
[45] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | MR | Zbl | Zbl
[46] J. Pike, H. Ren, “Stein's method and the Laplace distribution”, ALEA Lat. Am. J. Probab. Math. Stat., 11:2 (2014), 571–587 | MR | Zbl
[47] J. V. Prokhorov, “Asymptotic behavior of the binomial distribution”, Select. Transl. Math. Stat. Probab., 1, Inst. Math. Statist. and Amer. Math. Soc., Providence, RI, 1961, 87–95 | MR | MR | Zbl | Zbl
[48] H. Robbins, “The asymptotic distribution of the sum of a random number of random variables”, Bull. Amer. Math. Soc., 54:12 (1948), 1151–1161 | DOI | MR | Zbl
[49] B. Roos, “Asymptotics and sharp bounds in the Poisson approximation to the Poisson-binomial distribution”, Bernoulli, 5:6 (1999), 1021–1034 | DOI | MR | Zbl
[50] B. Roos, “Sharp constants in the Poisson approximation”, Statist. Probab. Lett., 52:2 (2001), 155–168 | DOI | MR | Zbl
[51] B. Roos, “Kerstan's method for compound Poisson approximation”, Ann. Probab., 31:4 (2003), 1754–1771 | DOI | MR | Zbl
[52] B. Roos, D. Pfeifer, “On the distance between the distributions of random sums”, J. Appl. Probab., 40:1 (2003), 87–106 | DOI | MR | Zbl
[53] G. V. Rotar, “Ob odnoi zadache upravleniya rezervami”, Ekonom. matem. metody, 12:4 (1976), 733–739 | MR | Zbl
[54] R. J. Serfling, “Some elementary results on Poisson approximation in a sequence of Bernoulli trials”, SIAM Rev., 20:3 (1978), 567–579 | DOI | MR | Zbl
[55] I. Shevtsova, “Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation”, Ann. Math. Inform., 39 (2012), 241–307 | MR | Zbl
[56] I. G. Shevtsova, “On the accuracy of the normal approximation for sums of independent random variables”, Dokl. Math., 85:2 (2012), 274–278 | DOI | MR | Zbl
[57] I. G. Shevtsova, “On the accuracy of the normal approximation to compound Poisson distributions”, Theory Probab. Appl., 58:1 (2014), 138–158 | DOI | DOI | MR | Zbl
[58] I. G. Shevtsova, “Ob absolyutnykh konstantakh v neravenstve Berri–Esseena i ego strukturnykh i neravnomernykh utochneniyakh”, Inform. i ee primen., 7:1 (2013), 124–125
[59] I. G. Shevtsova, “On the absolute constants in the Berry–Esseen-type inequalities”, Dokl. Math., 89:3 (2014), 378–381 | DOI | MR | Zbl
[60] I. G. Shevtsova, “Momentnoe neravenstvo s primeneniem k otsenkam skorosti skhodimosti v globalnoi TsPT dlya puasson-binomialnykh sluchainykh summ”, Teoriya veroyatn. i ee primen., 62:2 (2017), 345–364 | DOI | MR
[61] S. Ya. Šorgin, “Approximation of a generalized binomial distribution”, Theory Probab. Appl., 22:4 (1978), 846–850 | DOI | MR | Zbl
[62] J. K. Sunklodas, “On the rate of convergence of $L_p$ norms in the CLT for Poisson random sum”, Liet. Mat. Rink., LMD Darbai, 50 (2009), 437–442 | Zbl
[63] J. K. Sunklodas, “On the normal approximation of a sum of a random number of independent random variables”, Lith. Math. J., 52:4 (2012), 435–443 | DOI | MR | Zbl
[64] J. K. Sunklodas, “Some estimates of normal approximation for the distribution of a sum of a random number of independent random variables”, Lith. Math. J., 52:3 (2012), 326–333 | DOI | MR | Zbl
[65] J. K. Sunklodas, “$L_1$ bounds for asymptotic normality of random sums of independent random variables”, Lith. Math. J., 53:4 (2013), 438–447 | DOI | MR | Zbl
[66] J. K. Sunklodas, “On the normal approximation of a binomial random sum”, Lith. Math. J., 54:3 (2014), 356–365 | DOI | MR | Zbl
[67] J. K. Sunklodas, “On the normal approximation of a negative binomial random sum”, Lith. Math. J., 55:1 (2015), 150–158 | DOI | MR | Zbl
[68] I. Tyurin, New estimates of the convergence rate in the Lyapunov theorem, arXiv: 0912.0726
[69] I. S. Tyurin, “On the accuracy of the Gaussian approximation”, Dokl. Math., 80:3 (2009), 840–843 | DOI | MR | Zbl
[70] I. S. Tyurin, “On the convergence rate in Lyapunov's theorem”, Theory Probab. Appl., 55:2 (2011), 253–270 | DOI | DOI | MR | Zbl
[71] A. Yu. Zaitsev, “On the accuracy of approximation of distributions of sums of independent random variables — which are nonzero with a small probability — by means of accompanying laws”, Theory Probab. Appl., 28:4 (1984), 657–669 | DOI | MR | Zbl
[72] V. M. Zolotarev, Modern theory of summation of random variables, Mod. Probab. Stat., rev. and enlarged vers., VSP, Utrecht, 1997, x+412 pp. | DOI | MR | MR | Zbl | Zbl