Convergence rate estimates in the global CLT for compound mixed Poisson distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 89-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the estimates of the accuracy of the normal approximation to distributions of Poisson-binomial random sums from [I. G. Shevtsova, Theory Probab. Appl., 62 (2018), pp. 278–294], we obtain moment-type estimates of the rate of convergence in the central limit theorem for Poisson and mixed Poisson random sums in the uniform and mean metrics. As corollaries, we provide estimates of the accuracy of the approximation to distributions of negative binomial random sums by the normal law (with the growth of the shape parameter) and by the variance-gamma mixture of the normal law (as the “success probability” tends to zero); in particular, we present estimates of the accuracy of the Laplace approximation to distributions of geometric random sums.
Mots-clés : Poisson random sum, Laplace distribution
Keywords: geometric random sum, compound Poisson distribution, central limit theorem (CLT), convergence rate estimate, normal approximation, Berry–Esseen inequality, asymptotically exact constant.
@article{TVP_2018_63_1_a4,
     author = {I. G. Shevtsova},
     title = {Convergence rate estimates in the global {CLT} for compound mixed {Poisson} distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {89--116},
     year = {2018},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a4/}
}
TY  - JOUR
AU  - I. G. Shevtsova
TI  - Convergence rate estimates in the global CLT for compound mixed Poisson distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 89
EP  - 116
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a4/
LA  - ru
ID  - TVP_2018_63_1_a4
ER  - 
%0 Journal Article
%A I. G. Shevtsova
%T Convergence rate estimates in the global CLT for compound mixed Poisson distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 89-116
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a4/
%G ru
%F TVP_2018_63_1_a4
I. G. Shevtsova. Convergence rate estimates in the global CLT for compound mixed Poisson distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 89-116. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a4/

[1] R. P. Agnew, “Global versions of the central limit theorem”, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 800–804 | DOI | MR | Zbl

[2] R. P. Agnew, “Estimates for global central limit theorems”, Ann. Math. Statist., 28 (1957), 26–42 | DOI | MR | Zbl

[3] A. D. Barbour, P. Hall, “On the rate of Poisson convergence”, Math. Proc. Cambridge Philos. Soc., 95:3 (1984), 473–480 | DOI | MR | Zbl

[4] A. D. Barbour, L. Holst, S. Janson, Poisson approximation, Oxford Stud. Probab., 2, The Clarendon Press, Oxford Univ. Press, New York, 1992, x+277 pp. | MR | Zbl

[5] Kh. Batirov, D. V. Manevich, S. V. Nagaev, “The Esseen inequality for sums of a random number of differently distributed random variables”, Math. Notes, 22:1 (1977), 569–571 | DOI | MR | Zbl

[6] V. E. Bening, V. Yu. Korolev, Generalized Poisson models and their applications in insurance and finance, Mod. Probab. Stat., VSP, Utrecht, 2002, xix+434 pp. | DOI | Zbl

[7] S. G. Bobkov, “Proximity of probability distributions in terms of Fourier–Stieltjes transforms”, Russian Math. Surveys, 71:6 (2016), 1021–1079 | DOI | DOI | MR | Zbl

[8] V. Čekanavičius, B. Roos, “An expansion in the exponent for compound binomial approximations”, Liet. Mat. Rink., 46:1 (2006), 67–110 | MR | Zbl

[9] N. Chaidee, K. Neammanee, “Berry–Esseen bound for independent random sum via Stein's method”, Int. Math. Forum, 3:13-16 (2008), 721–738 | MR | Zbl

[10] N. Chaidee, M. Tuntapthai, “Berry–Esseen bounds for random sums of non-i.i.d. random variables”, Int. Math. Forum, 4:25-28 (2009), 1281–1288 | MR | Zbl

[11] L. H. Y. Chen, “On the convergence of Poisson binomial to Poisson distributions”, Ann. Probab., 2:1 (1974), 178–180 | DOI | MR | Zbl

[12] R. von Chossy, G. Rappl, “Some approximation methods for the distribution of random sums”, Insurance Math. Econom., 2:4 (1983), 251–270 | DOI | MR | Zbl

[13] P. Deheuvels, D. Pfeifer, “A semigroup approach to Poisson approximation”, Ann. Probab., 14:2 (1986), 663–676 | DOI | MR | Zbl

[14] P. Deheuvels, D. Pfeifer, “Operator semigroups and Poisson convergence in selected metrics”, Semigroup Forum, 34:2 (1986), 203–224 | DOI | MR | Zbl

[15] P. Deheuvels, D. Pfeifer, “On a relationship between Uspensky's theorem and Poisson approximations”, Ann. Inst. Statist. Math., 40:4 (1988), 671–681 | DOI | MR | Zbl

[16] M. Denuit, J. Dhaene, M. Goovaerts, R. Kaas, Actuarial theory for dependent risks. Measures, orders and models, John Wiley Sons, Ltd., Chichester, UK, 2005, xviii+440 pp. | DOI

[17] C. Döbler, On rates of convergence and Berry–Esseen bounds for random sums of centered random variables with finite third moments, arXiv: 1212.5401

[18] C. Döbler, “New Berry–Esseen and Wasserstein bounds in the CLT for non-randomly centered random sums by probabilistic methods”, ALEA Lat. Am. J. Probab. Math. Stat., 12:2 (2015), 863–902 | MR | Zbl

[19] W. Doeblin, “Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d'états”, Rev. Math. Union Interbalkanique, 2 (1938), 77–105 | Zbl

[20] N. Elezović, C. Giordano, J. Pečarić, “The best bounds in Gautschi's inequality”, Math. Inequal. Appl., 3:2 (2000), 239–252 | DOI | MR | Zbl

[21] G. Englund, “A remainder term estimate in a random-sum central limit theorem”, Teoriya veroyatn. i ee primen., 28:1 (1983), 143–149 ; Theory Probab. Appl., 28:1 (1984), 149–157 | MR | Zbl | DOI

[22] R. E. Gaunt, “Inequalities for modified Bessel functions and their integrals”, J. Math. Anal. Appl., 420:1 (2014), 373–386 | DOI | MR | Zbl

[23] W. Gautschi, “Some elementary inequalities relating to the gamma and incomplete gamma function”, J. Math. and Phys., 38 (1959), 77–81 | DOI | MR | Zbl

[24] S. V. Gavrilenko, “Otsenki skorosti skhodimosti raspredelenii sluchainykh summ s bezgranichno delimymi indeksami k normalnomu zakonu”, Inform. i ee primen., 4:4 (2010), 80–87

[25] S. V. Gavrilenko, “Utochnenie neravnomernoi otsenki skorosti skhodimosti raspredelenii puassonovskikh sluchainykh summ k normalnomu zakonu”, Inform. i ee primen., 5:1 (2011), 12–24

[26] S. V. Gavrilenko, V. Yu. Korolev, “Otsenki skorosti skhodimosti smeshannykh puassonovskikh sluchainykh summ”, Sistemy i sredstva inform., 2006, spets. vypusk, “Matematicheskie modeli v informatsionnykh tekhnologiyakh”, 248–257

[27] B. V. Gnedenko, V. Yu. Korolev, Random summation. Limit theorems and applications, CRC Press, Boca Raton, FL, 1996, viii+267 pp. | MR | Zbl

[28] I. S. Gradshteyn, I. M. Ryzhik, “Table of integrals, series, and products”, 5th ed., Academic Press, Inc., Boston, MA, 1994, xlviii+1204 pp. | MR | MR | Zbl | Zbl

[29] J. Grandell, Doubly stochastic Poisson processes, Lecture Notes in Math., 529, Springer-Verlag, Berlin–New York, 1976, x+234 pp. | DOI | MR | Zbl

[30] J. Grandell, Mixed Poisson processes, Monogr. Statist. Appl. Probab., 77, Chapman Hall, London, 1997, xii+268 pp. | MR | Zbl

[31] J. Kerstan, “Verallgemeinerung eines Satzes von Prochorow und Le Cam”, Z. Wahrscheinlichkeitstheor. verw. Geb., 2:3 (1964), 173–179 | DOI | MR | Zbl

[32] A. Khintchine, Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Ergeb. Math. Grenzgeb., 2, no. 4, Springer–Verlag, Berlin, 1933, iv+77 pp. | DOI | Zbl

[33] V. Yu. Korolev, “On the accuracy of normal approximation for the distributions of sums of a random number of independent random variables”, Theory Probab. Appl., 33:3 (1988), 540–544 | DOI | MR | Zbl

[34] V. Yu. Korolev, “A general theorem on the limit behavior of superpositions of independent random processes with applications to Cox processes”, J. Math. Sci., 81:5 (1996), 2951–2956 | DOI | MR | Zbl

[35] V. Yu. Korolev, V. E. Bening, S. Ya. Shorgin, Matematicheskie osnovy teorii riska, Fizmatlit, M., 2007, 544 pp. | Zbl

[36] V. Korolev, A. Dorofeeva, “Bounds of the accuracy of the normal approximation to the distributions of random sums under relaxed moment conditions”, Lith. Math. J., 57:1 (2017), 38–58 | DOI | MR | Zbl

[37] V. Korolev, I. Shevtsova, “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scand. Actuar. J., 2012:2 (2012), 81–105 | DOI | MR | Zbl

[38] V. M. Kruglov, V. Yu. Korolev, Predelnye teoremy dlya sluchainykh summ, MGU, M., 1990, 270 pp. | MR | Zbl

[39] L. Le Cam, “An approximation theorem for the Poisson binomial distribution”, Pacific J. Math., 10:4 (1960), 1181–1197 | DOI | MR | Zbl

[40] L. Le Cam, “On the distribution of sums of independent random variables”, Bernoulli, Bayes, Laplace (anniversary volume) (Statist. Lab., Univ. California, Berkeley, CA, 1963), Springer-Verlag, New York, 1965, 179–202 | MR | Zbl

[41] T. Lindvall, Lectures on the coupling method, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., John Wiley Sons, Inc., New York, 1992, xiv+257 pp. | MR | Zbl

[42] R. Michel, “An improved error bound for the compound Poisson approximation of a nearly homogeneous portfolio”, ASTIN Bull., 17:2 (1987), 165–169 | DOI

[43] R. Michel, “On Berry–Esseen results for the compound Poisson distribution”, Insurance Math. Econom., 13:1 (1993), 35–37 | DOI | MR | Zbl

[44] S. Yu. Novak, Predelnye teoremy i otsenki skorosti skhodimosti v teorii ekstremalnykh znachenii, Diss. ... dokt. fiz.-matem. nauk, Midlsekskii un-t, SPb., 2014, 230 pp.

[45] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | MR | Zbl | Zbl

[46] J. Pike, H. Ren, “Stein's method and the Laplace distribution”, ALEA Lat. Am. J. Probab. Math. Stat., 11:2 (2014), 571–587 | MR | Zbl

[47] J. V. Prokhorov, “Asymptotic behavior of the binomial distribution”, Select. Transl. Math. Stat. Probab., 1, Inst. Math. Statist. and Amer. Math. Soc., Providence, RI, 1961, 87–95 | MR | MR | Zbl | Zbl

[48] H. Robbins, “The asymptotic distribution of the sum of a random number of random variables”, Bull. Amer. Math. Soc., 54:12 (1948), 1151–1161 | DOI | MR | Zbl

[49] B. Roos, “Asymptotics and sharp bounds in the Poisson approximation to the Poisson-binomial distribution”, Bernoulli, 5:6 (1999), 1021–1034 | DOI | MR | Zbl

[50] B. Roos, “Sharp constants in the Poisson approximation”, Statist. Probab. Lett., 52:2 (2001), 155–168 | DOI | MR | Zbl

[51] B. Roos, “Kerstan's method for compound Poisson approximation”, Ann. Probab., 31:4 (2003), 1754–1771 | DOI | MR | Zbl

[52] B. Roos, D. Pfeifer, “On the distance between the distributions of random sums”, J. Appl. Probab., 40:1 (2003), 87–106 | DOI | MR | Zbl

[53] G. V. Rotar, “Ob odnoi zadache upravleniya rezervami”, Ekonom. matem. metody, 12:4 (1976), 733–739 | MR | Zbl

[54] R. J. Serfling, “Some elementary results on Poisson approximation in a sequence of Bernoulli trials”, SIAM Rev., 20:3 (1978), 567–579 | DOI | MR | Zbl

[55] I. Shevtsova, “Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation”, Ann. Math. Inform., 39 (2012), 241–307 | MR | Zbl

[56] I. G. Shevtsova, “On the accuracy of the normal approximation for sums of independent random variables”, Dokl. Math., 85:2 (2012), 274–278 | DOI | MR | Zbl

[57] I. G. Shevtsova, “On the accuracy of the normal approximation to compound Poisson distributions”, Theory Probab. Appl., 58:1 (2014), 138–158 | DOI | DOI | MR | Zbl

[58] I. G. Shevtsova, “Ob absolyutnykh konstantakh v neravenstve Berri–Esseena i ego strukturnykh i neravnomernykh utochneniyakh”, Inform. i ee primen., 7:1 (2013), 124–125

[59] I. G. Shevtsova, “On the absolute constants in the Berry–Esseen-type inequalities”, Dokl. Math., 89:3 (2014), 378–381 | DOI | MR | Zbl

[60] I. G. Shevtsova, “Momentnoe neravenstvo s primeneniem k otsenkam skorosti skhodimosti v globalnoi TsPT dlya puasson-binomialnykh sluchainykh summ”, Teoriya veroyatn. i ee primen., 62:2 (2017), 345–364 | DOI | MR

[61] S. Ya. Šorgin, “Approximation of a generalized binomial distribution”, Theory Probab. Appl., 22:4 (1978), 846–850 | DOI | MR | Zbl

[62] J. K. Sunklodas, “On the rate of convergence of $L_p$ norms in the CLT for Poisson random sum”, Liet. Mat. Rink., LMD Darbai, 50 (2009), 437–442 | Zbl

[63] J. K. Sunklodas, “On the normal approximation of a sum of a random number of independent random variables”, Lith. Math. J., 52:4 (2012), 435–443 | DOI | MR | Zbl

[64] J. K. Sunklodas, “Some estimates of normal approximation for the distribution of a sum of a random number of independent random variables”, Lith. Math. J., 52:3 (2012), 326–333 | DOI | MR | Zbl

[65] J. K. Sunklodas, “$L_1$ bounds for asymptotic normality of random sums of independent random variables”, Lith. Math. J., 53:4 (2013), 438–447 | DOI | MR | Zbl

[66] J. K. Sunklodas, “On the normal approximation of a binomial random sum”, Lith. Math. J., 54:3 (2014), 356–365 | DOI | MR | Zbl

[67] J. K. Sunklodas, “On the normal approximation of a negative binomial random sum”, Lith. Math. J., 55:1 (2015), 150–158 | DOI | MR | Zbl

[68] I. Tyurin, New estimates of the convergence rate in the Lyapunov theorem, arXiv: 0912.0726

[69] I. S. Tyurin, “On the accuracy of the Gaussian approximation”, Dokl. Math., 80:3 (2009), 840–843 | DOI | MR | Zbl

[70] I. S. Tyurin, “On the convergence rate in Lyapunov's theorem”, Theory Probab. Appl., 55:2 (2011), 253–270 | DOI | DOI | MR | Zbl

[71] A. Yu. Zaitsev, “On the accuracy of approximation of distributions of sums of independent random variables — which are nonzero with a small probability — by means of accompanying laws”, Theory Probab. Appl., 28:4 (1984), 657–669 | DOI | MR | Zbl

[72] V. M. Zolotarev, Modern theory of summation of random variables, Mod. Probab. Stat., rev. and enlarged vers., VSP, Utrecht, 1997, x+412 pp. | DOI | MR | MR | Zbl | Zbl