Criteria of relative and stochastic compactness for distributions of sums of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 70-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider sequences of distributions of centered sums of independent random variables within the scheme of series without imposing the classical conditions of uniform asymptotic negligibility and uniform asymptotic constancy. A criterion of relative compactness for such sequences of distributions was obtained by Siegel [Lith. Math. J., 21 (1981), pp. 331–341]. In the present paper this criterion is formulated in a more complete form, and a new proof is proposed based on characteristic functions. We also obtain a criterion of stochastic compactness, which is a stronger property than the one introduced by Feller [Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, 1965/66, Vol. 2: Contributions to Probability Theory, Part 1, 1967, pp. 373–388]. Moreover, several new criteria of relative and stochastic compactness for such sequences of distributions are proposed in terms of characteristic functions of summable random variables.
Keywords: sums of independent random variables, scheme of series, relative compactness, stochastic compactness, characteristic functions.
@article{TVP_2018_63_1_a3,
     author = {A. A. Khartov},
     title = {Criteria of relative and stochastic compactness for distributions of sums of independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {70--88},
     year = {2018},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a3/}
}
TY  - JOUR
AU  - A. A. Khartov
TI  - Criteria of relative and stochastic compactness for distributions of sums of independent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 70
EP  - 88
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a3/
LA  - ru
ID  - TVP_2018_63_1_a3
ER  - 
%0 Journal Article
%A A. A. Khartov
%T Criteria of relative and stochastic compactness for distributions of sums of independent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 70-88
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a3/
%G ru
%F TVP_2018_63_1_a3
A. A. Khartov. Criteria of relative and stochastic compactness for distributions of sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 70-88. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a3/

[1] W. Feller, “On regular variation and local limit theorems”, Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, Part 1 (Berkeley, CA, 1965/66), v. 2, Contributions to probability theory, 1967, 373–388 | MR | Zbl

[2] B. V. Gnedenko, A. N. Kolmogorov, “Limit distributions for sums of independent random variables”, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl

[3] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | MR | Zbl | Zbl

[4] V. M. Zolotarev, Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 416 pp. | MR | Zbl

[5] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl

[6] V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp. | MR | Zbl

[7] V. M. Zolotarev, Modern theory of summation of random variables, Mod. Probab. Statist., VSP, Utrecht, 1997, x+412 pp. | DOI | MR | Zbl

[8] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl

[9] N. C. Jain, S. Orey, “Domains of partial attraction and tightness conditions”, Ann. Probab., 8:3 (1980), 584–599 | DOI | MR | Zbl

[10] V. M. Kruglov, “Weak compactness of random sums of independent random variables”, Theory Probab. Appl., 43:2 (1999), 203–220 | DOI | DOI | MR | Zbl

[11] G. Siegel, “Compactness of a sequence of sums of independent variables with values in a Hilbert space”, Lith. Math. J., 21:4 (1982), 331–341 | DOI | MR | Zbl

[12] G. Siegel, “Zero-one laws and weak convergence for sums of independent random variables”, Math. Nachr., 86 (1978), 333–346 | DOI | MR | Zbl

[13] P. Hall, “Order of magnitude of the concentration function”, Proc. Amer. Math. Soc., 89:1 (1983), 141–144 | DOI | MR | Zbl

[14] R. A. Maller, “Relative stability, characteristic functions and stochastic compactness”, J. Austral. Math. Soc. Ser. A, 28:4 (1979), 499–509 | DOI | MR | Zbl

[15] R. A. Maller, “Some properties of stochastic compactness”, J. Austral. Math. Soc. Ser. A, 30:3 (1981), 264–277 | DOI | MR | Zbl

[16] A. A. Khartov, “Asymptotic analysis of average case approximation complexity of Hilbert space valued random elements”, J. Complexity, 31:6 (2015), 835–866 | DOI | MR | Zbl

[17] W. Hengartner, R. Theodorescu, Concentration functions, Probab. Math. Statist., 20, Academic Press, New York–London, 1973, xii+139 pp. | MR | MR | Zbl | Zbl

[18] M. Loève, Probability theory, 2nd ed., D. Van Nostrand Co., Inc., Princeton, NJ–Toronto–New York–London, 1960, vi+685 pp. | MR | MR | Zbl