@article{TVP_2018_63_1_a3,
author = {A. A. Khartov},
title = {Criteria of relative and stochastic compactness for distributions of sums of independent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {70--88},
year = {2018},
volume = {63},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a3/}
}
TY - JOUR AU - A. A. Khartov TI - Criteria of relative and stochastic compactness for distributions of sums of independent random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 70 EP - 88 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a3/ LA - ru ID - TVP_2018_63_1_a3 ER -
A. A. Khartov. Criteria of relative and stochastic compactness for distributions of sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 70-88. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a3/
[1] W. Feller, “On regular variation and local limit theorems”, Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, Part 1 (Berkeley, CA, 1965/66), v. 2, Contributions to probability theory, 1967, 373–388 | MR | Zbl
[2] B. V. Gnedenko, A. N. Kolmogorov, “Limit distributions for sums of independent random variables”, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl
[3] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | MR | Zbl | Zbl
[4] V. M. Zolotarev, Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 416 pp. | MR | Zbl
[5] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl
[6] V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp. | MR | Zbl
[7] V. M. Zolotarev, Modern theory of summation of random variables, Mod. Probab. Statist., VSP, Utrecht, 1997, x+412 pp. | DOI | MR | Zbl
[8] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl
[9] N. C. Jain, S. Orey, “Domains of partial attraction and tightness conditions”, Ann. Probab., 8:3 (1980), 584–599 | DOI | MR | Zbl
[10] V. M. Kruglov, “Weak compactness of random sums of independent random variables”, Theory Probab. Appl., 43:2 (1999), 203–220 | DOI | DOI | MR | Zbl
[11] G. Siegel, “Compactness of a sequence of sums of independent variables with values in a Hilbert space”, Lith. Math. J., 21:4 (1982), 331–341 | DOI | MR | Zbl
[12] G. Siegel, “Zero-one laws and weak convergence for sums of independent random variables”, Math. Nachr., 86 (1978), 333–346 | DOI | MR | Zbl
[13] P. Hall, “Order of magnitude of the concentration function”, Proc. Amer. Math. Soc., 89:1 (1983), 141–144 | DOI | MR | Zbl
[14] R. A. Maller, “Relative stability, characteristic functions and stochastic compactness”, J. Austral. Math. Soc. Ser. A, 28:4 (1979), 499–509 | DOI | MR | Zbl
[15] R. A. Maller, “Some properties of stochastic compactness”, J. Austral. Math. Soc. Ser. A, 30:3 (1981), 264–277 | DOI | MR | Zbl
[16] A. A. Khartov, “Asymptotic analysis of average case approximation complexity of Hilbert space valued random elements”, J. Complexity, 31:6 (2015), 835–866 | DOI | MR | Zbl
[17] W. Hengartner, R. Theodorescu, Concentration functions, Probab. Math. Statist., 20, Academic Press, New York–London, 1973, xii+139 pp. | MR | MR | Zbl | Zbl
[18] M. Loève, Probability theory, 2nd ed., D. Van Nostrand Co., Inc., Princeton, NJ–Toronto–New York–London, 1960, vi+685 pp. | MR | MR | Zbl