Limit theorems for power-series distributions with finite radius of convergence
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 57-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions for the weak convergence of the distributions of the random variables $(1-x)\xi_x$ as $x\to1-$ to the limiting gamma-distribution are put forward. The random variable $\xi_x$ has power-series distribution with radius of convergence $1$ and parameter $x\in(0,1)$. Limit theorems for the probabilities $\mathbf P\{\xi_x=k\}$ are proposed. Asymptotic expansions of local probabilities are derived for sums of independent identically distributed variables with the same distribution as $\xi_x$ in a triangular array with $x\to1-$. For the corresponding general allocation scheme, local limit theorems for the joint distributions of the occupancies of the cells are obtained.
Keywords: power-series distributions, radius of convergence, triangular arrays, weak convergence.
Mots-clés : gamma-distribution
@article{TVP_2018_63_1_a2,
     author = {A. N. Timashev},
     title = {Limit theorems for power-series distributions with finite radius of convergence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {57--69},
     year = {2018},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a2/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Limit theorems for power-series distributions with finite radius of convergence
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 57
EP  - 69
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a2/
LA  - ru
ID  - TVP_2018_63_1_a2
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Limit theorems for power-series distributions with finite radius of convergence
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 57-69
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a2/
%G ru
%F TVP_2018_63_1_a2
A. N. Timashev. Limit theorems for power-series distributions with finite radius of convergence. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a2/

[1] A. Noack, “A class of random variables with discrete distributions”, Ann. Math. Statist., 21 (1950), 127–132 | DOI | MR | Zbl

[2] N. L. Johnson, S. Kotz, A. W. Kemp, Univariate discrete distributions, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1992, xxii+565 pp. | MR | Zbl

[3] V. F. Kolchin, “A certain class of limit theorems for conditional distributions”, Selected translations in mathematical statistics and probability, 11, Amer. Math. Soc., Providence, RI, 1973, 185–197 | MR | MR | Zbl | Zbl

[4] V. F. Kolchin, Random mappings, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1986, xiv+207 pp. | MR | MR | Zbl | Zbl

[5] A. N. Timashev, Asimptoticheskie razlozheniya v veroyatnostnoi kombinatorike, TVP, M., 2010, 312 pp.

[6] A. N. Timashev, Additivnye zadachi s ogranicheniyami na znacheniya slagaemykh, Akademiya, M., 2015, 183 pp.

[7] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl

[8] M. V. Fedoryuk, Asimptotika. Integraly i ryady, Nauka, M., 1987, 544 pp. | MR | Zbl

[9] E. T. Copson, Asymptotic expansions, Cambridge Tracts in Mathematics and Mathematical Physics, 55, Cambridge Univ. Press, New York, 1965, vii+120 pp. | DOI | MR | Zbl | Zbl