Limit theorems for power-series distributions with finite radius of convergence
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 57-69
Voir la notice de l'article provenant de la source Math-Net.Ru
Sufficient conditions for the weak convergence of the distributions of
the random variables $(1-x)\xi_x$ as $x\to1-$ to the limiting gamma-distribution are put forward.
The random variable $\xi_x$ has power-series distribution with radius of convergence $1$ and parameter $x\in(0,1)$.
Limit theorems for the probabilities $\mathbf P\{\xi_x=k\}$ are proposed.
Asymptotic expansions of local probabilities are derived for sums of
independent identically distributed variables with the same distribution as $\xi_x$ in a triangular array with $x\to1-$.
For the corresponding general allocation scheme,
local limit theorems for the joint distributions of the occupancies of the cells are obtained.
Keywords:
power-series distributions, radius of convergence, triangular arrays, weak convergence.
Mots-clés : gamma-distribution
Mots-clés : gamma-distribution
@article{TVP_2018_63_1_a2,
author = {A. N. Timashev},
title = {Limit theorems for power-series distributions with finite radius of convergence},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {57--69},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a2/}
}
A. N. Timashev. Limit theorems for power-series distributions with finite radius of convergence. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a2/