Constructing explicit estimators in nonlinear regression problems
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 29-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we propose a general approach to constructing explicit consistent estimators for some classes of nonlinear regression models. These estimators can be used as initial ones in one-step estimation procedures capable of delivering, in a sense, optimal estimators in an explicit form.
Keywords: nonlinear regression, explicit estimator, $\alpha_n$-consistency, asymptotic normality, one-step estimator, initial estimator.
@article{TVP_2018_63_1_a1,
     author = {Yu. Yu. Linke and I. S. Borisov},
     title = {Constructing explicit estimators in nonlinear regression problems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {29--56},
     year = {2018},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a1/}
}
TY  - JOUR
AU  - Yu. Yu. Linke
AU  - I. S. Borisov
TI  - Constructing explicit estimators in nonlinear regression problems
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 29
EP  - 56
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a1/
LA  - ru
ID  - TVP_2018_63_1_a1
ER  - 
%0 Journal Article
%A Yu. Yu. Linke
%A I. S. Borisov
%T Constructing explicit estimators in nonlinear regression problems
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 29-56
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a1/
%G ru
%F TVP_2018_63_1_a1
Yu. Yu. Linke; I. S. Borisov. Constructing explicit estimators in nonlinear regression problems. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 29-56. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a1/

[1] A. A. Borovkov, Mathematical statistics, Gordon Breach Science Publishers, Amsterdam, 1998, xxii+570 pp. | MR | Zbl | Zbl

[2] J. Hájek, Z. Šidák, Theory of rank tests, Academic Press, New York–London; Academia, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1967, 297 pp. | MR | Zbl

[3] G. A. F. Seber, Linear regression analysis, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–London–Sydney, 1977, xvii+465 pp. | MR | MR | Zbl | Zbl

[4] N. R. Draper, H. Smith, Applied regression analysis, Wiley Ser. Probab. Math. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1981, xiv+709 pp. | MR | Zbl

[5] Yu. Yu. Linke, “Asimptoticheskie svoistva odnoshagovykh vzveshennykh $M$-otsenok s prilozheniyami k zadacham regressii”, Teoriya veroyatn. i ee primen., 62:3 (2017), 468–498 | DOI

[6] Yu. Yu. Linke, “Refinement of Fisher's one-step estimators in the case of slowly converging preliminary estimators”, Theory Probab. Appl., 60:1 (2016), 88–102 | DOI | DOI | MR | Zbl

[7] Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically normal explicit estimation of parameters in the Michaelis–Menten equation”, Siberian Math. J., 42:3 (2001), 517–536 | DOI | MR | Zbl

[8] C. C. Heyde, Quasi-likelihood and its application. A general approach to optimal parameter estimation, Springer Ser. Statist., Springer-Verlag, New York, 1997, x+235 pp. | DOI | MR | Zbl

[9] J. Jurečková, P. K. Sen, J. Picek, Methodology in robust and nonparametric statistics, CRC Press, Boca Raton, FL, 2013, xvi+394 pp. | DOI | MR | Zbl

[10] G. A. F. Seber, C. J. Wild, Nonlinear regression, Wiley Ser. Probab. Statist., paperback ed., John Wiley Sons, Inc., Hoboken, NJ, 2003, xxii+768 pp. | MR | Zbl

[11] Yu. Yu. Linke, “Asymptotic normality of one-step $M$-estimators based on non-identically distributed observations”, Statist. Probab. Lett., 129 (2017), 216–221 | DOI | MR

[12] Yu. Yu. Linke, I. S. Borisov, “Constructing initial estimators in one-step estimation procedures of nonlinear regression”, Statist. Probab. Lett., 120 (2017), 87–94 | DOI | MR | Zbl

[13] H.-G. Müller, Nonparametric regression analysis of longitudinal data, Lect. Notes Stat., 46, Springer-Verlag, Berlin, 1988, vi+199 pp. | DOI | MR | Zbl

[14] A. Sakhanenko, “On existence of explicit asymptotically normal estimators in nonlinear regression problems”, Analytical methods in statistics (Prague, 2015), Springer Proc. Math. Stat., 193, Springer, Cham, 2017, 159–187 | DOI | MR | Zbl

[15] C. G. Small, Jinfang Wang, Numerical methods for nonlinear estimating equations, Oxford Statist. Sci. Ser., 29, The Clarendon Press, Oxford Univ. Press, New York, 2003, xii+309 pp. | DOI | MR | Zbl

[16] C. G. Small, Zejiang Yang, “Multiple roots of estimating functions”, Canad. J. Statist., 27:3 (1999), 585–598 | DOI | MR | Zbl

[17] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | MR | Zbl | Zbl

[18] J. O. Rawlings, S. G. Pantula, D. A. Dickey, Applied regression analysis. A research tool, Springer Texts Statist., 2nd ed., Springer-Verlag, New York, 1998, xviii+657 pp. | DOI | MR | Zbl