High extremes of Gaussian chaos processes: a discrete time approximation approach
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 3-28

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbf{\boldsymbol{\xi}}(t)=(\xi_{1}(t),\ldots,\xi_{d}(t))$ be a Gaussian zero mean stationary a.s. continuous vector process. Let $g\colon{\mathbb{R}}^{d}\to {\mathbb{R}}$ be a homogeneous function of positive degree. We study probabilities of high extrema of the Gaussian chaos process $g(\mathbf{\boldsymbol{\xi}}(t))$. Important examples are products of Gaussian processes, $\prod_{i=1}^{d}\xi_{i}(t)$, and quadratic forms $\sum_{i,j=1}^{d}a_{ij}\xi_{i}(t)\xi_{j}(t)$. Methods of our studies include the Laplace saddle point asymptotic approximation and the double sum asymptotic method for probabilities of high excursions of Gaussian processes. For the first time, using the double sum method, we apply the discrete time approximation with refining grid.
Keywords: Gaussian processes, Gaussian chaos, high extreme probabilities, Laplace saddle point approximation method, double sum method.
@article{TVP_2018_63_1_a0,
     author = {A. I. Zhdanov and V. I. Piterbarg},
     title = {High extremes of {Gaussian} chaos processes: a discrete time approximation approach},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--28},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/}
}
TY  - JOUR
AU  - A. I. Zhdanov
AU  - V. I. Piterbarg
TI  - High extremes of Gaussian chaos processes: a discrete time approximation approach
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 3
EP  - 28
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/
LA  - ru
ID  - TVP_2018_63_1_a0
ER  - 
%0 Journal Article
%A A. I. Zhdanov
%A V. I. Piterbarg
%T High extremes of Gaussian chaos processes: a discrete time approximation approach
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 3-28
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/
%G ru
%F TVP_2018_63_1_a0
A. I. Zhdanov; V. I. Piterbarg. High extremes of Gaussian chaos processes: a discrete time approximation approach. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 3-28. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/