High extremes of Gaussian chaos processes: a discrete time approximation approach
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 3-28
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbf{\boldsymbol{\xi}}(t)=(\xi_{1}(t),\ldots,\xi_{d}(t))$
be a Gaussian zero mean stationary a.s. continuous vector process.
Let $g\colon{\mathbb{R}}^{d}\to {\mathbb{R}}$ be a homogeneous function of positive degree. We study probabilities of high
extrema of the Gaussian chaos process
$g(\mathbf{\boldsymbol{\xi}}(t))$. Important examples are
products of Gaussian processes, $\prod_{i=1}^{d}\xi_{i}(t)$, and
quadratic forms $\sum_{i,j=1}^{d}a_{ij}\xi_{i}(t)\xi_{j}(t)$.
Methods of our studies include the Laplace saddle point asymptotic
approximation and the double sum asymptotic method for
probabilities of high excursions of Gaussian processes. For the
first time, using the double sum method, we apply the discrete time
approximation with refining grid.
Keywords:
Gaussian processes, Gaussian chaos, high extreme probabilities, Laplace saddle point approximation method, double sum method.
@article{TVP_2018_63_1_a0,
author = {A. I. Zhdanov and V. I. Piterbarg},
title = {High extremes of {Gaussian} chaos processes: a discrete time approximation approach},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {3--28},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/}
}
TY - JOUR AU - A. I. Zhdanov AU - V. I. Piterbarg TI - High extremes of Gaussian chaos processes: a discrete time approximation approach JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 3 EP - 28 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/ LA - ru ID - TVP_2018_63_1_a0 ER -
A. I. Zhdanov; V. I. Piterbarg. High extremes of Gaussian chaos processes: a discrete time approximation approach. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 3-28. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/