@article{TVP_2018_63_1_a0,
author = {A. I. Zhdanov and V. I. Piterbarg},
title = {High extremes of {Gaussian} chaos processes: a discrete time approximation approach},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {3--28},
year = {2018},
volume = {63},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/}
}
TY - JOUR AU - A. I. Zhdanov AU - V. I. Piterbarg TI - High extremes of Gaussian chaos processes: a discrete time approximation approach JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 3 EP - 28 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/ LA - ru ID - TVP_2018_63_1_a0 ER -
A. I. Zhdanov; V. I. Piterbarg. High extremes of Gaussian chaos processes: a discrete time approximation approach. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 3-28. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/
[1] D. A. Korshunov, V. I. Piterbarg, E. Hashorva, “On extremal behavior of Gaussian chaos”, Dokl. Math., 88:2 (2013), 566–568 | DOI | DOI | MR | Zbl
[2] D. A. Korshunov, V. I. Piterbarg, E. Hashorva, “On the asymptotic Laplace method and its application to random chaos”, Math. Notes, 97:6 (2015), 878–891 | DOI | DOI | MR | Zbl
[3] V. Piterbarg, S. Stamatović, “Limit theorem for high level $a$-upcrossings by $\chi$-process”, Theory Probab. Appl., 48:4 (2004), 734–741 | DOI | DOI | MR | Zbl
[4] A. I. Zhdanov, “On probability of high extremes for product of two Gaussian stationary processes”, Theory Probab. Appl., 60:3 (2016), 520–527 | DOI | DOI | MR | Zbl
[5] V. I. Piterbarg, “Large extremes of Gaussian chaos processes”, Dokl. Math., 93:2 (2016), 145–147 | DOI | DOI | MR | Zbl
[6] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press, London, 2015, xi+167 pp. | Zbl
[7] P. Albin, E. Hashorva, Lanpeng Ji, Chengxiu Ling, “Extremes and limit theorems for difference of chi-type processes”, ESAIM Probab. Stat., 20 (2016), 349–366 ; arXiv: 1508.02758 | DOI | MR | Zbl
[8] E. Hashorva, D. Korshunov, V. I. Piterbarg, “Asymptotic expansion of Gaussian chaos via probabilistic approach”, Extremes, 18:3 (2015), 315–347 | DOI | MR | Zbl
[9] G. Lindgren, “Extreme values and crossings for the $\chi^{2}$-process and other functions of multidimensional Gaussian processes, with reliability applications”, Adv. in Appl. Probab., 12:3 (1980), 746–774 | DOI | MR | Zbl
[10] J. Pickands, III, “Upcrossing probabilities for stationary Gaussian processes”, Trans. Amer. Math. Soc., 145 (1969), 51–73 | DOI | MR | Zbl
[11] V. I. Piterbarg, “Discrete and continuous time extremes of Gaussian processes”, Extremes, 7:2 (2004), 161–177 | DOI | MR | Zbl
[12] V. I. Piterbarg, “High excursions for nonstationary generalized chi-square processes”, Stochastic Process. Appl., 53:2 (1994), 307–337 | DOI | MR | Zbl
[13] V. I. Piterbarg, “High deviations for multidimensional stationary Gaussian processes with independent components”, Stability problems for stochastic models, Proceedings of the 15th seminar (Perm, 1992), TVP–VSP, Moscow–Utrecht, 1994, 197–230 | Zbl
[14] V. I. Piterbarg, A. Zhdanov, “On probability of high extremes for product of two independent Gaussian stationary processes”, Extremes, 18:1 (2015), 99–108 | DOI | MR | Zbl
[15] V. I. Piterbarg, “High extrema of Gaussian chaos processes”, Extremes, 19:2 (2016), 253–272 | DOI | MR | Zbl
[16] V. I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Transl. Math. Monogr., 148, reprint ed., Amer. Math. Soc., Providence, RI, 2012, xii+206 pp. | MR | Zbl | Zbl
[17] Zhongquan Tan, E. Hashorva, “Exact asymptotics and limit theorems for supremum of stationary $\chi$-processes over a random interval”, Stochastic Process. Appl., 123:8 (2013), 2983–2998 | DOI | MR | Zbl
[18] Zhongquan Tan, E. Hashorva, “Limit theorems for extremes of strongly dependent cyclo-stationary $\chi$-processes”, Extremes, 16:2 (2013), 241–254 | DOI | MR | Zbl