High extremes of Gaussian chaos processes: a discrete time approximation approach
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 3-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbf{\boldsymbol{\xi}}(t)=(\xi_{1}(t),\ldots,\xi_{d}(t))$ be a Gaussian zero mean stationary a.s. continuous vector process. Let $g\colon{\mathbb{R}}^{d}\to {\mathbb{R}}$ be a homogeneous function of positive degree. We study probabilities of high extrema of the Gaussian chaos process $g(\mathbf{\boldsymbol{\xi}}(t))$. Important examples are products of Gaussian processes, $\prod_{i=1}^{d}\xi_{i}(t)$, and quadratic forms $\sum_{i,j=1}^{d}a_{ij}\xi_{i}(t)\xi_{j}(t)$. Methods of our studies include the Laplace saddle point asymptotic approximation and the double sum asymptotic method for probabilities of high excursions of Gaussian processes. For the first time, using the double sum method, we apply the discrete time approximation with refining grid.
Keywords: Gaussian processes, Gaussian chaos, high extreme probabilities, Laplace saddle point approximation method, double sum method.
@article{TVP_2018_63_1_a0,
     author = {A. I. Zhdanov and V. I. Piterbarg},
     title = {High extremes of {Gaussian} chaos processes: a discrete time approximation approach},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--28},
     year = {2018},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/}
}
TY  - JOUR
AU  - A. I. Zhdanov
AU  - V. I. Piterbarg
TI  - High extremes of Gaussian chaos processes: a discrete time approximation approach
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 3
EP  - 28
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/
LA  - ru
ID  - TVP_2018_63_1_a0
ER  - 
%0 Journal Article
%A A. I. Zhdanov
%A V. I. Piterbarg
%T High extremes of Gaussian chaos processes: a discrete time approximation approach
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 3-28
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/
%G ru
%F TVP_2018_63_1_a0
A. I. Zhdanov; V. I. Piterbarg. High extremes of Gaussian chaos processes: a discrete time approximation approach. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 1, pp. 3-28. http://geodesic.mathdoc.fr/item/TVP_2018_63_1_a0/

[1] D. A. Korshunov, V. I. Piterbarg, E. Hashorva, “On extremal behavior of Gaussian chaos”, Dokl. Math., 88:2 (2013), 566–568 | DOI | DOI | MR | Zbl

[2] D. A. Korshunov, V. I. Piterbarg, E. Hashorva, “On the asymptotic Laplace method and its application to random chaos”, Math. Notes, 97:6 (2015), 878–891 | DOI | DOI | MR | Zbl

[3] V. Piterbarg, S. Stamatović, “Limit theorem for high level $a$-upcrossings by $\chi$-process”, Theory Probab. Appl., 48:4 (2004), 734–741 | DOI | DOI | MR | Zbl

[4] A. I. Zhdanov, “On probability of high extremes for product of two Gaussian stationary processes”, Theory Probab. Appl., 60:3 (2016), 520–527 | DOI | DOI | MR | Zbl

[5] V. I. Piterbarg, “Large extremes of Gaussian chaos processes”, Dokl. Math., 93:2 (2016), 145–147 | DOI | DOI | MR | Zbl

[6] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press, London, 2015, xi+167 pp. | Zbl

[7] P. Albin, E. Hashorva, Lanpeng Ji, Chengxiu Ling, “Extremes and limit theorems for difference of chi-type processes”, ESAIM Probab. Stat., 20 (2016), 349–366 ; arXiv: 1508.02758 | DOI | MR | Zbl

[8] E. Hashorva, D. Korshunov, V. I. Piterbarg, “Asymptotic expansion of Gaussian chaos via probabilistic approach”, Extremes, 18:3 (2015), 315–347 | DOI | MR | Zbl

[9] G. Lindgren, “Extreme values and crossings for the $\chi^{2}$-process and other functions of multidimensional Gaussian processes, with reliability applications”, Adv. in Appl. Probab., 12:3 (1980), 746–774 | DOI | MR | Zbl

[10] J. Pickands, III, “Upcrossing probabilities for stationary Gaussian processes”, Trans. Amer. Math. Soc., 145 (1969), 51–73 | DOI | MR | Zbl

[11] V. I. Piterbarg, “Discrete and continuous time extremes of Gaussian processes”, Extremes, 7:2 (2004), 161–177 | DOI | MR | Zbl

[12] V. I. Piterbarg, “High excursions for nonstationary generalized chi-square processes”, Stochastic Process. Appl., 53:2 (1994), 307–337 | DOI | MR | Zbl

[13] V. I. Piterbarg, “High deviations for multidimensional stationary Gaussian processes with independent components”, Stability problems for stochastic models, Proceedings of the 15th seminar (Perm, 1992), TVP–VSP, Moscow–Utrecht, 1994, 197–230 | Zbl

[14] V. I. Piterbarg, A. Zhdanov, “On probability of high extremes for product of two independent Gaussian stationary processes”, Extremes, 18:1 (2015), 99–108 | DOI | MR | Zbl

[15] V. I. Piterbarg, “High extrema of Gaussian chaos processes”, Extremes, 19:2 (2016), 253–272 | DOI | MR | Zbl

[16] V. I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Transl. Math. Monogr., 148, reprint ed., Amer. Math. Soc., Providence, RI, 2012, xii+206 pp. | MR | Zbl | Zbl

[17] Zhongquan Tan, E. Hashorva, “Exact asymptotics and limit theorems for supremum of stationary $\chi$-processes over a random interval”, Stochastic Process. Appl., 123:8 (2013), 2983–2998 | DOI | MR | Zbl

[18] Zhongquan Tan, E. Hashorva, “Limit theorems for extremes of strongly dependent cyclo-stationary $\chi$-processes”, Extremes, 16:2 (2013), 241–254 | DOI | MR | Zbl