Asymptotic near-minimaxity of the randomized Shiryaev–Roberts–Pollak change-point detection procedure in continuous time
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 769-786 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the classical continuous-time quickest change-point detection problem it is shown that the randomized Shiryaev–Roberts–Pollak procedure is asymptotically nearly minimax-optimal (in the sense of Pollak [Ann. Statist., 13 (1985), pp. 206–227]) in the class of randomized procedures with vanishingly small false alarm risk. The proof is explicit in that all of the relevant performance characteristics are found analytically and in a closed form. The rate of convergence to the (unknown) optimum is elucidated as well. The obtained optimality result is a one-order improvement of that previously obtained by Burnaev, Feinberg, and Shiryaev [Theory Probab. Appl., 53 (2009), pp. 519–536] for the very same problem.
Keywords: minimax optimality, optimal stopping, quasi-stationary distribution, sequential change-point detection, Shiryaev–Roberts procedure.
@article{TVP_2017_62_4_a6,
     author = {A. S. Polunchenko},
     title = {Asymptotic near-minimaxity of the randomized {Shiryaev{\textendash}Roberts{\textendash}Pollak} change-point detection procedure in continuous time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {769--786},
     year = {2017},
     volume = {62},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a6/}
}
TY  - JOUR
AU  - A. S. Polunchenko
TI  - Asymptotic near-minimaxity of the randomized Shiryaev–Roberts–Pollak change-point detection procedure in continuous time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 769
EP  - 786
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a6/
LA  - en
ID  - TVP_2017_62_4_a6
ER  - 
%0 Journal Article
%A A. S. Polunchenko
%T Asymptotic near-minimaxity of the randomized Shiryaev–Roberts–Pollak change-point detection procedure in continuous time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 769-786
%V 62
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a6/
%G en
%F TVP_2017_62_4_a6
A. S. Polunchenko. Asymptotic near-minimaxity of the randomized Shiryaev–Roberts–Pollak change-point detection procedure in continuous time. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 769-786. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a6/

[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards, Applied Mathematics Series, 55, 10th ed., U.S. Government Printing Office, Washington, DC, 1964, xiv+1046 pp. | MR | MR | Zbl | Zbl

[2] H. Buchholz, The confluent hypergeometric function with special emphasis on its applications, Springer Tracts in Natural Philosophy, 15, Springer-Verlag New York Inc., New York, 1969, xviii+238 pp. | DOI | MR | Zbl

[3] E. V. Burnaev, “O determinirovannom metode vtorogo poryadka obnaruzheniya razladki v minimaksnoi zadache dlya brounovskogo dvizheniya”, Tezisy X Vserossiiskogo simpoziuma po prikladnoi i promyshlennoi matematike (osennyaya otkrytaya sessiya) (Sochi, 2009), 2009, 2 pp. http://www.tvp.ru/conferen/vsppm10autumn.htm

[4] E. V. Burnaev, E. A. Feinberg, A. N. Shiryaev, “On asymptotic optimality of the second order in the minimax quickest detection problem of drift change for Brownian motion”, Theory Probab. Appl., 53:3 (2009), 519–536 | DOI | DOI | MR | Zbl

[5] P. Cattiaux, P. Collet, A. Lambert, S. Martínez, S. Méléard, J. San Martín, “Quasi-stationary distributions and diffusion models in population dynamics”, Ann. Probab., 37:5 (2009), 1926–1969 | DOI | MR | Zbl

[6] P. Collet, S. Martínez, J. San Martín, Quasi-stationary distributions. Markov chains, diffusions and dynamical systems, Probab. Appl., Springer, Heidelberg, 2013, xvi+280 pp. | DOI | MR | Zbl

[7] E. A. Feinberg, A. N. Shiryaev, “Quickest detection of drift change for Brownian motion in generalized Bayesian and minimax settings”, Statist. Decisions, 24:4 (2006), 445–470 | DOI | MR | Zbl

[8] T. S. Ferguson, Mathematical statistics: A decision theoretic approach, Probab. Math. Statist., 1, Academic Press, New York–London, 1967, xi+396 pp. | MR | Zbl

[9] M. Geller, E. W. Ng, “A table of integrals of the exponential integral”, J. Res. Nat. Bur. Standards Sect. B, 73B:3 (1969), 191–210 | DOI | MR | Zbl

[10] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007, xlviii+1171 pp. | MR | MR | Zbl | Zbl

[11] P. Mandl, “Spectral theory of semi-groups connected with diffusion processes and its application”, Czechoslovak Math. J., 11:4 (1961), 558–569 | MR | Zbl

[12] Y. Mei, “Comments on ‘A note on optimal detection of a change in distribution’, by B. Yakir”, Ann. Statist., 34:3 (2006), 1570–1576 | DOI | MR | Zbl

[13] G. V. Moustakides, A. S. Polunchenko, A. G. Tartakovsky, “A numerical approach to performance analysis of quickest change-point detection procedures”, Statist. Sinica, 21:2 (2011), 571–596 | DOI | MR | Zbl

[14] M. Pollak, “Optimal detection of a change in distribution”, Ann. Statist., 13:1 (1985), 206–227 | DOI | MR | Zbl

[15] A. S. Polunchenko, “On the quasi-stationary distribution of the Shiryaev–Roberts diffusion”, Sequential Anal., 36:1 (2017), 126–149 | DOI | MR | Zbl

[16] A. S. Polunchenko, A. G. Tartakovsky, “On optimality of the Shiryaev–Roberts procedure for detecting a change in distribution”, Ann. Statist., 38:6 (2010), 3445–3457 | DOI | MR | Zbl

[17] A. S. Polunchenko, A. G. Tartakovsky, “State-of-the-art in sequential change-point detection”, Methodol. Comput. Appl. Probab., 14:3 (2012), 649–684 | DOI | MR | Zbl

[18] S. W. Roberts, “A comparison of some control chart procedures”, Technometrics, 8:3 (1966), 411–430 | DOI | MR

[19] A. N. Shiryaev, “The problem of the most rapid detection of a disturbance in a stationary process”, Soviet Math. Dokl., 2 (1961), 795–799 | MR | Zbl

[20] A. N. Shiryaev, “On optimum methods in quickest detection problems”, Theory Probab. Appl., 8:1 (1963), 22–46 | DOI | MR | Zbl

[21] A. N. Shiryaev, Optimal stopping rules, Appl. Math., 8, 3rd ed., Springer-Verlag, New York–Heidelberg, 1978, x+217 pp. | MR | MR | Zbl | Zbl

[22] A. N. Shiryaev, “Quickest detection problems in the technical analysis of the financial data”, Mathematical finance – Bachelier Congress 2000 (Paris), Springer Finance, Springer, Berlin, 2002, 487–521 | DOI | MR | Zbl

[23] A. N. Shiryaev, “From ‘disorder’ to nonlinear filtering and martingale theory”, Mathematical events of the twentieth century, Springer, Berlin, 2006, 371–397 | DOI | MR | Zbl

[24] A. N. Shiryaev, Veroyatnostno-statisticheskie metody v teorii prinyatiya reshenii, Lektsii shkoly analiza dannykh Yandeksa, MTsNMO, M., 2011, 144 pp.

[25] A. N. Shiryaev, Stokhasticheskie zadachi o razladke, MTsNMO, M., 2017, 392 pp.

[26] A. N. Shiryaev, P. Y. Zryumov, “On the linear and nonlinear generalized Bayesian disorder problem (discrete time case)”, Optimality and risk – modern trends in mathematical finance, Springer, Berlin, 2009, 227–235 | DOI | MR | Zbl

[27] L. J. Slater, Confluent hypergeometric functions, Cambridge Univ. Press, Cambirdge, UK, 1960, xi+247 pp. | MR | MR | Zbl | Zbl

[28] A. G. Tartakovsky, G. V. Moustakides, “State-of-the-art in Bayesian changepoint detection”, Sequential Anal., 29:2 (2010), 125–145 | DOI | MR | Zbl

[29] A. Tartakovsky, I. Nikiforov, M. Basseville, Sequential analysis. Hypothesis testing and changepoint detection, Monogr. Statist. Appl. Probab., 136, CRC Press, Boca Raton, FL, 2015, xxiv+579 pp. | MR | Zbl

[30] A. G. Tartakovsky, M. Pollak, A. S. Polunchenko, “Third-order asymptotic optimality of the Generalized Shiryaev–Roberts changepoint detection procedures”, Teoriya veroyatn. i ee primen., 56:3 (2011), 534–565 | DOI | MR | Zbl

[31] A. G. Tartakovsky, A. S. Polunchenko, “Minimax optimality of the Shiryaev–Roberts procedure”, Proceedings of the 5th International Workshop in Applied Probability (Universidad Carlos III de Madrid, Spain), 2010

[32] E. T. Whittaker, “An expression of certain known functions as generalized hypergeometric functions”, Bull. Amer. Math. Soc., 10:3 (1903), 125–134 | DOI | MR | Zbl

[33] E. T. Whittaker, G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, Cambridge, UK, 1927, vii+608 pp. | MR | Zbl | Zbl

[34] B. Yakir, “A note on optimal detection of a change in distribution”, Ann. Statist., 25:5 (1997), 2117–2126 | DOI | MR | Zbl