Quantifying minimal noncollinearity among random points
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 753-768 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\varphi_ {n, K} $ denote the largest angle in all the triangles with vertices among the $ n $ points selected at random in a compact convex subset $ K $ of $\mathbb {R}^ d $ with nonempty interior, where $ d\ge2 $. It is shown that the distribution of the random variable $\lambda_d (K)\,\frac {n^ 3}{3!}\,(\pi-\varphi_ {n, K})^{d-1} $, where $\lambda_d (K) $ is a certain positive real number which depends only on the dimension $d$ and the shape of $K$, converges to the standard exponential distribution as $n\to\infty$. By using the Steiner symmetrization, it is also shown that $\lambda_d (K)$, which is referred to in the paper as the elongation of $K$, attains its minimum if and only if $K$ is a ball $B^{(d)}$ in $\mathbf {R}^d$. Finally, the asymptotics of $\lambda_d(B^{(d)})$ for large $d$ is determined.
Keywords: convex sets, random points, geometric probability theory, integral geometry, Steiner symmetrization, asymptotic approximation.
Mots-clés : maximal angle, convergence in distribution
@article{TVP_2017_62_4_a5,
     author = {I. Pinelis},
     title = {Quantifying minimal noncollinearity among random points},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {753--768},
     year = {2017},
     volume = {62},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a5/}
}
TY  - JOUR
AU  - I. Pinelis
TI  - Quantifying minimal noncollinearity among random points
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 753
EP  - 768
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a5/
LA  - en
ID  - TVP_2017_62_4_a5
ER  - 
%0 Journal Article
%A I. Pinelis
%T Quantifying minimal noncollinearity among random points
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 753-768
%V 62
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a5/
%G en
%F TVP_2017_62_4_a5
I. Pinelis. Quantifying minimal noncollinearity among random points. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 753-768. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a5/

[1] C. Fuller, “A constructive proof of the Cartan–Dieudonné–Scherk theorem in the real or complex case”, J. Pure Appl. Algebra, 215:5 (2011), 1116–1126 | DOI | MR | Zbl

[2] J. Galambos, “On the distribution of the maximum of random variables”, Ann. Math. Statist., 43:2 (1972), 516–521 | DOI | MR | Zbl

[3] B. Klartag, “Rate of convergence of geometric symmetrizations”, Geom. Funct. Anal., 14:6 (2004), 1322–1338 | DOI | MR | Zbl

[4] I. Pinelis, Alignment of random points, MathOverflow, 2016 http://mathoverflow.net/q/247328

[5] A. Rényi, “A general method for the proof of some theorems of probability theory and its applications”, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 11 (1961), 79–105 (in Hungarian) | Zbl

[6] R. T. Rockafellar, Convex analysis, Princeton Landmarks Math., Reprint of the 1970 original, Princeton Univ. Press, Princeton, NJ, 1997, xviii+451 pp. | MR | Zbl | Zbl