Quantifying minimal noncollinearity among random points
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 753-768

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varphi_ {n, K} $ denote the largest angle in all the triangles with vertices among the $ n $ points selected at random in a compact convex subset $ K $ of $\mathbb {R}^ d $ with nonempty interior, where $ d\ge2 $. It is shown that the distribution of the random variable $\lambda_d (K)\,\frac {n^ 3}{3!}\,(\pi-\varphi_ {n, K})^{d-1} $, where $\lambda_d (K) $ is a certain positive real number which depends only on the dimension $d$ and the shape of $K$, converges to the standard exponential distribution as $n\to\infty$. By using the Steiner symmetrization, it is also shown that $\lambda_d (K)$, which is referred to in the paper as the elongation of $K$, attains its minimum if and only if $K$ is a ball $B^{(d)}$ in $\mathbf {R}^d$. Finally, the asymptotics of $\lambda_d(B^{(d)})$ for large $d$ is determined.
Keywords: convex sets, random points, geometric probability theory, integral geometry, Steiner symmetrization, asymptotic approximation.
Mots-clés : maximal angle, convergence in distribution
@article{TVP_2017_62_4_a5,
     author = {I. Pinelis},
     title = {Quantifying minimal noncollinearity among random points},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {753--768},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a5/}
}
TY  - JOUR
AU  - I. Pinelis
TI  - Quantifying minimal noncollinearity among random points
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 753
EP  - 768
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a5/
LA  - en
ID  - TVP_2017_62_4_a5
ER  - 
%0 Journal Article
%A I. Pinelis
%T Quantifying minimal noncollinearity among random points
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 753-768
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a5/
%G en
%F TVP_2017_62_4_a5
I. Pinelis. Quantifying minimal noncollinearity among random points. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 753-768. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a5/