Mots-clés : maximal angle, convergence in distribution
@article{TVP_2017_62_4_a5,
author = {I. Pinelis},
title = {Quantifying minimal noncollinearity among random points},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {753--768},
year = {2017},
volume = {62},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a5/}
}
I. Pinelis. Quantifying minimal noncollinearity among random points. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 753-768. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a5/
[1] C. Fuller, “A constructive proof of the Cartan–Dieudonné–Scherk theorem in the real or complex case”, J. Pure Appl. Algebra, 215:5 (2011), 1116–1126 | DOI | MR | Zbl
[2] J. Galambos, “On the distribution of the maximum of random variables”, Ann. Math. Statist., 43:2 (1972), 516–521 | DOI | MR | Zbl
[3] B. Klartag, “Rate of convergence of geometric symmetrizations”, Geom. Funct. Anal., 14:6 (2004), 1322–1338 | DOI | MR | Zbl
[4] I. Pinelis, Alignment of random points, MathOverflow, 2016 http://mathoverflow.net/q/247328
[5] A. Rényi, “A general method for the proof of some theorems of probability theory and its applications”, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 11 (1961), 79–105 (in Hungarian) | Zbl
[6] R. T. Rockafellar, Convex analysis, Princeton Landmarks Math., Reprint of the 1970 original, Princeton Univ. Press, Princeton, NJ, 1997, xviii+451 pp. | MR | Zbl | Zbl