Extensions of regularity for a Lévy process
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 719-752 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain necessary and sufficient conditions for the finiteness of certain moment functions of the random variable $T_0^-$, which is the first passage time of a Lévy process $(X_t)_{t\ge 0}$ below zero, and the position $X_{T_0^-}$ of the process at this time. Our results generalize classical results of Rogozin and Bertoin on the regularity of $X$, and extend earlier results of Blumenthal and Getoor on the regularity index.
Keywords: regularity of a real-valued Lévy process, dominance of the positive part of a Lévy process over the negative part, first passage of a Lévy process below zero, first passage time, dominated variation conditions, Rogozin regularity condition.
@article{TVP_2017_62_4_a4,
     author = {R. A. Maller},
     title = {Extensions of regularity for a {L\'evy} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {719--752},
     year = {2017},
     volume = {62},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a4/}
}
TY  - JOUR
AU  - R. A. Maller
TI  - Extensions of regularity for a Lévy process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 719
EP  - 752
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a4/
LA  - ru
ID  - TVP_2017_62_4_a4
ER  - 
%0 Journal Article
%A R. A. Maller
%T Extensions of regularity for a Lévy process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 719-752
%V 62
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a4/
%G ru
%F TVP_2017_62_4_a4
R. A. Maller. Extensions of regularity for a Lévy process. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 719-752. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a4/

[1] Y. Aït-Sahalia, J. Jacod, “Identifying the successive Blumenthal–Getoor indices of a discretely observed process”, Ann. Statist., 40:3 (2012), 1430–1464 | DOI | MR | Zbl

[2] J. Bertoin, Lévy processes, Cambridge Tracts in Math., 121, Cambridge Univ. Press, Cambridge, 1996, x+265 pp. | MR | Zbl

[3] J. Bertoin, “Regularity of the half-line for Lévy processes”, Bull. Sci. Math., 121:5 (1997), 345–354 | MR | Zbl

[4] J. Bertoin, R. A. Doney, “Spitzer's condition for random walks and Lévy processes”, Ann. Inst. H. Poincaré Probab. Statist., 33:2 (1997), 167–178 | DOI | MR | Zbl

[5] J. Bertoin, R. A. Doney, R. A. Maller, “Passage of Lévy processes across power law boundaries at small times”, Ann. Probab., 36:1 (2008), 160–197 | DOI | MR | Zbl

[6] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl

[7] R. M. Blumenthal, R. K. Getoor, “Sample functions of stochastic processes with stationary independent increments”, J. Math. Mech., 10 (1961), 493–516 | MR | Zbl

[8] Yuan Shih Chow, H. Teicher, Probability theory. Independence, interchangeability, martingales, Springer Texts Statist., 2nd ed., Springer-Verlag, 1988, xviii+467 pp. | DOI | MR | Zbl

[9] R. A. Doney, “Small-time behaviour of Lévy processes”, Electron. J. Probab., 9:8 (2004), 209–229 | DOI | MR | Zbl

[10] R. A. Doney, Fluctuation theory for Lévy processes. Ecole d'Eté de probabilités de Saint-Flour XXXV – 2005, Lecture Notes in Math., 1897, Springer, Berlin, 2007, x+147 pp. | DOI | MR | Zbl

[11] P. Erdős, “On a theorem of Hsu and Robbins”, Ann. Math. Statist., 20:2 (1949), 286–291 | DOI | MR | Zbl

[12] K. B. Erickson, “The strong law of large numbers when the mean is undefined”, Trans. Amer. Math. Soc., 185 (1973) (1974), 371–381 | DOI | MR | Zbl

[13] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl

[14] H. Kesten, R. A. Maller, “Two renewal theorems for general random walks tending to infinity”, Probab. Theory Related Fields, 106:1 (1996), 1–38 | DOI | MR | Zbl

[15] V. Knopova, R. L. Schilling, J. Wang, “Lower bounds of the Hausdorff dimension for the images of Feller processes”, Statist. Probab. Lett., 97 (2015), 222–228 ; arXiv: 1406.3849v2 | DOI | MR | Zbl

[16] A. Kuznetsov, “Analytic proof of Pecherskii–Rogozin identity and Wiener–Hopf factorization”, Theory Probab. Appl., 55:3 (2011), 432–443 | DOI | DOI | MR | Zbl

[17] B. A. Rogozin, “On distributions of functionals related to boundary problems for processes with independent increments”, Theory Probab. Appl., 11:4 (1966), 580–591 | DOI | MR | Zbl

[18] B. A. Rogozin, “Local behavior of processes with independent increments”, Theory Probab. Appl., 13:3 (1968), 482–486 | DOI | MR | Zbl

[19] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999, xii+486 pp. | MR | Zbl

[20] E. S. Shtatland, “On local properties of processes with independent increments”, Theory Probab. Appl., 10:2 (1965), 317–322 | DOI | MR | Zbl

[21] F. Spitzer, “A combinatorial lemma and its applications to probability theory”, Trans. Amer. Math. Soc., 82:2 (1956), 323–339 | DOI | MR | Zbl

[22] V. Vigon, “Votre Lévy rampe-t-il?”, J. London Math. Soc. (2), 65:1 (2002), 243–256 | DOI | MR | Zbl