Fractional diffusion–telegraph equations and their associated stochastic solutions
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 692-718 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the stochastic solution to a generalized fractional partial differential equation (fPDE) involving a regularized operator related to the so-called Prabhakar operator and admitting as specific cases, among others, the fractional diffusion equation and the fractional telegraph equation. The stochastic solution is expressed as a Lévy process time-changed with the inverse process to a linear combination of (possibly subordinated) independent stable subordinators of different indices. Furthermore a related stochastic differential equation (SDE) is derived and discussed.
Keywords: time-changed processes, Prabhakar operators, regularized Prabhakar derivative, fractional derivatives, stochastic solution.
Mots-clés : Lévy processes
@article{TVP_2017_62_4_a3,
     author = {M. D'Ovidio and F. Polito},
     title = {Fractional diffusion{\textendash}telegraph equations and their associated stochastic solutions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {692--718},
     year = {2017},
     volume = {62},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a3/}
}
TY  - JOUR
AU  - M. D'Ovidio
AU  - F. Polito
TI  - Fractional diffusion–telegraph equations and their associated stochastic solutions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 692
EP  - 718
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a3/
LA  - en
ID  - TVP_2017_62_4_a3
ER  - 
%0 Journal Article
%A M. D'Ovidio
%A F. Polito
%T Fractional diffusion–telegraph equations and their associated stochastic solutions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 692-718
%V 62
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a3/
%G en
%F TVP_2017_62_4_a3
M. D'Ovidio; F. Polito. Fractional diffusion–telegraph equations and their associated stochastic solutions. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 692-718. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a3/

[1] B. Baeumer, M. M. Meerschaert, “Stochastic solutions for fractional Cauchy problems”, Fract. Calc. Appl. Anal., 4:4 (2001), 481–500 | MR | Zbl

[2] E. Bazhlekova, “The abstract Cauchy problem for the fractional evolution equation”, Fract. Calc. Appl. Anal., 1:3 (1998), 255–270 | MR | Zbl

[3] E. G. Bazhlekova, “Subordination principle for fractional evolution equations”, Fract. Calc. Appl. Anal., 3:3 (2000), 213–230 | MR | Zbl

[4] N. H. Bingham, “Limit theorems for occupation times of Markov processes”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 17 (1971), 1–22 | DOI | MR | Zbl

[5] M. Caputo, “Linear models of dissipation whose $Q$ is almost frequency independent. II”, Geophys. J., 13:5 (1967), 529–539 | DOI

[6] G. Doetsch, Introduction to the theory and application of the Laplace transformation, Springer-Verlag, New York–Heidelberg, 1974, vii+326 pp. | DOI | MR | Zbl

[7] M. D'Ovidio, “Explicit solutions to fractional differential equations via generalized gamma convolution”, Electron. Commun. Probab., 15 (2010), 42, 457–474 | DOI | MR | Zbl

[8] M. D'Ovidio, “From Sturm–Liouville problems to fractional and anomalous diffusions”, Stochastic Process. Appl., 122:10 (2012), 3513–3544 | DOI | MR | Zbl

[9] M. D'Ovidio, E. Orsingher, B. Toaldo, “Time-changed processes governed by space-time fractional telegraph equations”, Stoch. Anal. Appl., 32:6 (2014), 1009–1045 | DOI | MR | Zbl

[10] M. M. Dzhrbashyan, A. B. Nersesyan, “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Arm. SSR. Ser. matem., 3:1 (1968), 3–29 | MR | Zbl

[11] S. D. Eidelman, A. N. Kochubei, “Cauchy problem for fractional diffusion equations”, J. Differential Equations, 199:2 (2004), 211–255 | DOI | MR | Zbl

[12] R. Figueiredo Camargo, A. O. Chiacchio, E. Capelas de Oliveira, “Differentiation to fractional orders and the fractional telegraph equation”, J. Math. Phys., 49:3 (2008), 033505, 12 pp. | DOI | MR | Zbl

[13] R. Garra, E. Orsingher, F. Polito, “Fractional Klein–Gordon equations and related stochastic processes”, J. Stat. Phys., 155:4 (2014), 777–809 | DOI | MR | Zbl

[14] M. Hahn, K. Kobayashi, S. Umarov, “SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations”, J. Theoret. Probab., 25:1 (2012), 262–279 | DOI | MR | Zbl

[15] A. A. Kilbas, M. Saigo, R. K. Saxena, “Generalized Mittag-Leffler function and generalized fractional calculus operators”, Integral Transforms Spec. Funct., 15:1 (2004), 31–49 | DOI | MR | Zbl

[16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier Sci. B.V., Amsterdam, 2006, xvi+523 pp. | MR | Zbl

[17] A. N. Kochubei, “Fractional-parabolic systems”, Potential Anal., 37:1 (2012), 1–30 | DOI | MR | Zbl

[18] A. Kochubei, “Fractional-hyperbolic systems”, Fract. Calc. Appl. Anal., 16:4 (2013), 860–873 | DOI | MR | Zbl

[19] N. N. Leonenko, M. M. Meerschaert, A. Sikorskii, “Fractional Pearson diffusions”, J. Math. Anal. Appl., 403:2 (2013), 532–546 | DOI | MR | Zbl

[20] J. Liouville, “Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions”, J. École Polytech., 13:21 (1832), 1–69

[21] F. Mainardi, “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math. Lett., 9:6 (1996), 23–28 | DOI | MR | Zbl

[22] A. M. Mathai, H. J. Haubold, Special functions for applied scientists, Springer, New York, 2008, xxv+464 pp. | DOI | Zbl

[23] M. M. Meerschaert, H.-P. Scheffler, “Limit theorems for continuous-time random walks with infinite mean waiting times”, J. Appl. Probab., 41:3 (2004), 623–638 | DOI | MR | Zbl

[24] M. M. Meerschaert, A. Sikorskii, Stochastic models for fractional calculus, De Gruyter Stud. Math., 43, Walter de Gruyter Co., Berlin, 2012, x+291 pp. | DOI | MR | Zbl

[25] M. M. Meerschaert, D. A Benson, H.-P. Scheffler, B. Baeumer, “Stochastic solution of space-time fractional diffusion equations”, Phys. Rev. E (3), 65:4 (2002), 041103, 4 pp. | DOI | MR | Zbl

[26] M. M. Meerschaert, E. Nane, P. Vellaisamy, “Fractional Cauchy problems on bounded domains”, Ann. Probab., 37:3 (2009), 979–1007 | DOI | MR | Zbl

[27] E. Orsingher, L. Beghin, “Time-fractional telegraph equations and telegraph processes with Brownian time”, Probab. Theory Related Fields, 128:1 (2004), 141–160 | DOI | MR | Zbl

[28] E. Orsingher, L. Beghin, “Fractional diffusion equations and processes with randomly varying time”, Ann. Probab., 37:1 (2009), 206–249 | DOI | MR | Zbl

[29] Y. Z. Povstenko, “Fractional Cattaneo-type equations and generalized thermoelasticity”, J. Thermal Stresses, 34:2 (2011), 97–114 | DOI

[30] T. R. Prabhakar, “A singular integral equation with a generalized Mittag Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | MR | Zbl

[31] W. R. Schneider, W. Wyss, “Fractional diffusion and wave equations”, J. Math. Phys., 30:1 (1989), 134–144 | DOI | MR | Zbl

[32] S. Yakubovich, M. M. Rodrigues, “Fundamental solutions of the fractional two-parameter telegraph equation”, Integral Transforms Spec. Funct., 23:7 (2012), 509–519 | DOI | MR | Zbl