Fractional diffusion--telegraph equations and their associated stochastic solutions
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 692-718

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the stochastic solution to a generalized fractional partial differential equation (fPDE) involving a regularized operator related to the so-called Prabhakar operator and admitting as specific cases, among others, the fractional diffusion equation and the fractional telegraph equation. The stochastic solution is expressed as a Lévy process time-changed with the inverse process to a linear combination of (possibly subordinated) independent stable subordinators of different indices. Furthermore a related stochastic differential equation (SDE) is derived and discussed.
Keywords: time-changed processes, Prabhakar operators, regularized Prabhakar derivative, fractional derivatives, stochastic solution.
Mots-clés : Lévy processes
@article{TVP_2017_62_4_a3,
     author = {M. D'Ovidio and F. Polito},
     title = {Fractional diffusion--telegraph equations and their associated stochastic solutions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {692--718},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a3/}
}
TY  - JOUR
AU  - M. D'Ovidio
AU  - F. Polito
TI  - Fractional diffusion--telegraph equations and their associated stochastic solutions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 692
EP  - 718
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a3/
LA  - en
ID  - TVP_2017_62_4_a3
ER  - 
%0 Journal Article
%A M. D'Ovidio
%A F. Polito
%T Fractional diffusion--telegraph equations and their associated stochastic solutions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 692-718
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a3/
%G en
%F TVP_2017_62_4_a3
M. D'Ovidio; F. Polito. Fractional diffusion--telegraph equations and their associated stochastic solutions. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 692-718. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a3/