On the classical capacity of a channel with stationary quantum Gaussian noise
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 670-691 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical models of a quantum communication channel with time-continuous additive stationary Gaussian noise are considered. A proof of the coding theorem in the case of quantum Gaussian “broadband” gauge-covariant channels is proposed, which gives an expression for the classical capacity of the channel in spectral terms.
Keywords: quantum communication channel, classical capacity, stationary Gaussian noise.
@article{TVP_2017_62_4_a2,
     author = {A. S. Kholevo},
     title = {On the classical capacity of a channel with stationary quantum {Gaussian} noise},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {670--691},
     year = {2017},
     volume = {62},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a2/}
}
TY  - JOUR
AU  - A. S. Kholevo
TI  - On the classical capacity of a channel with stationary quantum Gaussian noise
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 670
EP  - 691
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a2/
LA  - ru
ID  - TVP_2017_62_4_a2
ER  - 
%0 Journal Article
%A A. S. Kholevo
%T On the classical capacity of a channel with stationary quantum Gaussian noise
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 670-691
%V 62
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a2/
%G ru
%F TVP_2017_62_4_a2
A. S. Kholevo. On the classical capacity of a channel with stationary quantum Gaussian noise. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 670-691. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a2/

[1] B. R. Bardhan, J. H. Shapiro, “Ultimate capacity of a linear time-invariant bosonic channel”, Phys. Rev. A, 93:3 (2016), 032342 | DOI

[2] C. M. Caves, P. D. Drummond, “Quantum limits of bosonic communication rates”, Rev. Mod. Phys., 66:2 (1994), 481–537 | DOI

[3] G. De Palma, A. Mari, V. Giovannetti, “Classical capacity of Gaussian thermal memory channels”, Phys. Rev. A, 90:4 (2014), 042312 | DOI

[4] R. G. Gallager, Information theory and reliable communication, John Wiley Sons, Inc., New York, 1968, xvi+588 pp. | Zbl | Zbl

[5] V. Giovannetti, A. S. Holevo, R. García-Patrón, “A solution of Gaussian optimizer conjecture for quantum channels”, Comm. Math. Phys., 334:3 (2015), 1553–1571 | DOI | MR | Zbl

[6] V. Giovannetti, R. García-Patrón, N. J. Cerf, A. S. Holevo, “Ultimate classical communication rates of quantum optical channels”, Nature Photonics, 8:10 (2014), 796–800 | DOI

[7] V. Giovannetti, S. Lloyd, L. Maccone, P. W. Shor, “Broadband channel capacities”, Phys. Rev. A, 68:6 (2003), 062323 | DOI

[8] M. J. W. Hall, “Quantum information and correlation bounds”, Phys. Rev. A, 55:1 (1997), 100–113 | DOI | Zbl

[9] C. W. Helstrom, “Quantum detection theory”, Progress in Optics, 10, North-Holland Publishing Co., Amsterdam, 1972, 289–369 | DOI

[10] A. S. Holevo, “Some estimates for information quantity transmitted by quantum communication channel”, Problems Inform. Transmission, 9:3 (1973), 177–183 | MR | Zbl

[11] A. S. Holevo, “Investigations in the general theory of statistical decisions”, Proc. Steklov Inst. Math., 124 (1978), 1–140 | MR | Zbl

[12] A. S. Holevo, “Quantum coding theorems”, Russian Math. Surveys, 53:6 (1998), 1295–1331 ; Coding theorems for quantum channels, arXiv: quant-ph/9809023 | DOI | DOI | MR | Zbl

[13] A. S. Holevo, “One-mode quantum Gaussian channels: structure and quantum capacity”, Probl. Inform. Transmission, 43:1 (2007), 1–11 | DOI | MR | Zbl

[14] A. Holevo, Probabilistic and statistical aspects of quantum theory, Quad./Monogr., 1, 2nd ed., Edizioni della Normale, Pisa, 2011, xvi+323 pp. | DOI | MR | Zbl

[15] A. S. Holevo, “Information capacity of quantum observable”, Problems Inform. Transmission, 48:1 (2012), 1–10 | DOI | MR | Zbl

[16] A. S. Kholevo, Kvantovye sistemy, kanaly, informatsiya http://www.mi.ras.ru/holevo/~qir_cor.pdf

[17] A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory”, Russian Math. Surveys, 70:2 (2015), 331–367 | DOI | DOI | MR | Zbl

[18] A. S. Holevo, M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum channels”, Theory Probab. Appl., 50:1 (2005), 86–98 | DOI | DOI | MR | Zbl

[19] A. S. Holevo, R. F. Werner, “Evaluating capacities of bosonic Gaussian channels”, Phys. Rev. A., 63:3 (2001), 032312 | DOI

[20] D. S. Lebedev, L. B. Levitin, “Information transmission by electromagnetic field”, Information and Control, 9 (1966), 1–22 | DOI

[21] J. Manuceau, A. Verbeure, “Quasi-free states of the C.C.R. algebra and Bogoliubov transformations”, Comm. Math. Phys., 9:4 (1968), 293–302 | DOI | MR | Zbl

[22] K. R. Parthasarathy, An introduction to quantum stochastic calculus, Monogr. Math., 85, Birkhäuser Verlag, Basel, 1992, xii+290 pp. | DOI | MR | Zbl

[23] M. S. Pinsker, “Vychislenie skorosti sozdaniya soobschenii statsionarnym sluchainym protsessom i propusknoi sposobnosti statsionarnogo kanala”, Dokl. AN SSSR, 111:4 (1956), 753–756 | MR | Zbl

[24] L. N. Slobodetskii, “Obobschennye prostranstva S. L. Soboleva i ikh prilozhenie k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. Leningr. gos. ped. in-ta im. A. I. Gertsena, 197 (1958), 54–112