Analysis of the asymptotic behavior of the solution to a linear stochastic differential equation with subexponentially stable matrix and its application to a control problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 654-669 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the asymptotic behavior of the solution to a linear stochastic differential equation with subexponentially stable matrix. A result in the form of the strong law of large numbers is put forward for a pair of processes consisting of a squared norm of the solution and a deterministic function defined as an integral of the squared norm of the diffusion matrix. This result is applied in solving the problem of a linear-quadratic regulator over an infinite time-horizon for one class of undetectable systems.
Keywords: strong law of large numbers, linear equation, nonexponential stability, linear-quadratic regulator.
@article{TVP_2017_62_4_a1,
     author = {E. S. Palamarchuk},
     title = {Analysis of the asymptotic behavior of the solution to a~linear stochastic differential equation with subexponentially stable matrix and its application to a~control problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {654--669},
     year = {2017},
     volume = {62},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a1/}
}
TY  - JOUR
AU  - E. S. Palamarchuk
TI  - Analysis of the asymptotic behavior of the solution to a linear stochastic differential equation with subexponentially stable matrix and its application to a control problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 654
EP  - 669
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a1/
LA  - ru
ID  - TVP_2017_62_4_a1
ER  - 
%0 Journal Article
%A E. S. Palamarchuk
%T Analysis of the asymptotic behavior of the solution to a linear stochastic differential equation with subexponentially stable matrix and its application to a control problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 654-669
%V 62
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a1/
%G ru
%F TVP_2017_62_4_a1
E. S. Palamarchuk. Analysis of the asymptotic behavior of the solution to a linear stochastic differential equation with subexponentially stable matrix and its application to a control problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 654-669. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a1/

[1] R. Sh. Liptser, A. N. Shiryayev, Theory of martingales, Math. Appl. (Soviet Ser.), 49, Kluwer Academic Publishers Group, Dordrecht, 1989, xiv+792 pp. | DOI | MR | MR | Zbl | Zbl

[2] M. Inoue, T. Wada, M. Ikeda, “Non-exponential stabilization of linear time-invariant systems by linear time-varying controllers”, 2011 50th IEEE Conference on decision and control and European control conference (CDC-ECC) (Orlando, FL, 2011), IEEE, Piscataway, NJ, 2011, 4090–4095 | DOI

[3] L. Ya. Adrianova, Introduction to linear systems of differential equations, Transl. Math. Monogr., 146, Amer. Math. Soc., Providence, RI, 1995, x+204 pp. | MR | MR | Zbl

[4] J. E. Rubio, The theory of linear systems, Electrical Science Series, Academic Press, New York–London, 1971, xi+329 pp. | MR | Zbl

[5] T. Caraballo, “On the decay rate of solutions of non-autonomous differential systems”, Electron. J. Differential Equations, 2001 (2001), Paper No. 5, 17 pp. | MR | Zbl

[6] E. S. Palamarchuk, “Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process”, Comput. Math. Math. Phys., 54:1 (2014), 83–96 | DOI | DOI | MR | Zbl

[7] E. S. Palamarchuk, “Analysis of criteria for long-run average in the problem of stochastic linear regulator”, Autom. Remote Control, 77:10 (2016), 1756–1767 | DOI | Zbl

[8] K. J. Ȧström, Introduction to stochastic control theory, Math. Sci. Eng., 70, Academic Press, New York–London, 1970, xi+299 pp. | MR | Zbl

[9] N. Balakrishnan, Chin-Diew Lai, Continuous bivariate distributions, 2nd ed., Springer, Dordrecht, 2009, xxxvi+684 pp. | DOI | MR | Zbl

[10] H. Cramér, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley Sons, Inc., New York–London–Sydney, 1967, xii+348 pp. | MR | Zbl | Zbl

[11] A. Ichikawa, H. Katayama, Linear time varying systems and sampled-data systems, Lect. Notes Control Inf. Sci., 265, Springer-Verlag, London, 2001, x+361 pp. | MR | Zbl

[12] H. Kwakernaak, R. Sivan, Linear optimal control systems, Wiley-Interscience [John Wiley Sons], New York–London–Sydney, xxv+575 pp. | MR | Zbl

[13] T. A. Belkina, E. S. Palamarchuk, “On stochastic optimality for a linear controller with attenuating disturbances”, Autom. Remote Control, 74:4 (2013), 628–641 | DOI | MR | Zbl

[14] T. A. Belkina, Yu. M. Kabanov, E. L. Presman, “On a stochastic optimality of the feedback control in the LQG-problem”, Theory Probab. Appl., 48:4 (2004), 592–603 | DOI | DOI | MR | Zbl