@article{TVP_2017_62_4_a0,
author = {V. A. Vatutin and E. E. D'yakonova},
title = {Multitype branching processes in random environment: survival probability for the critical case},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {634--653},
year = {2017},
volume = {62},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a0/}
}
TY - JOUR AU - V. A. Vatutin AU - E. E. D'yakonova TI - Multitype branching processes in random environment: survival probability for the critical case JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 634 EP - 653 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a0/ LA - ru ID - TVP_2017_62_4_a0 ER -
%0 Journal Article %A V. A. Vatutin %A E. E. D'yakonova %T Multitype branching processes in random environment: survival probability for the critical case %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 634-653 %V 62 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a0/ %G ru %F TVP_2017_62_4_a0
V. A. Vatutin; E. E. D'yakonova. Multitype branching processes in random environment: survival probability for the critical case. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 634-653. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a0/
[1] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[2] K. B. Athreya, S. Karlin, “On branching processes with random environments. I. Extinction probabilities”, Ann. Math. Statist., 42:5 (1971), 1499–1520 | DOI | MR | Zbl
[3] Ch. Böinghoff, E. E. Dyakonova, G. Kersting, V. A. Vatutin, “Branching processes in random environment which extinct at a given moment”, Markov Process. Related Fields, 16:2 (2010), 329–350 | MR | Zbl
[4] Ph. Bougerol, J. Lacroix, Products of random matrices with applications to Schrödinger operators, Progr. Probab. Statist., 8, Birkhäuser Boston, Inc., Boston, MA, 1985, xii+283 pp. | DOI | MR | Zbl
[5] E. E. Dyakonova, “Asymptotic behaviour of the probability of non-extinction for a multi-type branching process in a random environment”, Discrete Math. Appl., 9:2 (1999), 119–136 | DOI | DOI | MR | Zbl
[6] E. E. Dyakonova, “Critical multitype branching processes in a random environment”, Discrete Math. Appl., 17:6 (2007), 587–606 | DOI | DOI | MR | Zbl
[7] V. Vatutin, E. Dyakonova, “Part to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602 ; arXiv: 1603.03199 | DOI | MR
[8] E. E. Dyakonova, “Limit theorem for multitype critical branching process evolving in random environment”, Discrete Math. Appl., 25:3 (2015), 137–147 | DOI | DOI | MR | Zbl
[9] E. E. Dyakonova, “Redutsirovannye mnogotipnye kriticheskie vetvyaschiesya protsessy v sluchainoi srede”, Diskret. matem., 28:4 (2016), 58–79 | DOI
[10] E. E. Dyakonova, J. Geiger, V. A. Vatutin, “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Related Fields, 10:2 (2004), 289–306 | MR | Zbl
[11] H. Furstenberg, H. Kesten, “Products of random matrices”, Ann. Math. Statist., 31:2 (1960), 457–469 | DOI | MR | Zbl
[12] J. Geiger, G. Kersting, “The survival probability of a critical branching process in a random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 ; Theory Probab. Appl., 45:3 (2001), 517–525 | DOI | MR | Zbl | DOI
[13] I. Grama, É. Le Page, M. Peigné, “Conditioned limit theorems for products of random matrices”, Probab. Theory Related Fields, 168:3-4 (2017), 601–639 ; arXiv: 1411.0423v2 | DOI | MR | Zbl
[14] M. V. Kozlov, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab. Appl., 21:4 (1977), 791–804 | DOI | MR | Zbl
[15] E. Le Page, M. Peigne, C. Pham, The survival probability of a critical multi-type branching process in i.i.d. random environment https://hal-univ-orleans.archives-ouvertes.fr/hal-01376091v1
[16] W. L. Smith, W. E. Wilkinson, “On branching processes in random environment”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl
[17] V. Vatutin, “A refinement of limit theorems for the critical branching processes in random environment”, Workshop on branching processes and their applications, Lect. Notes Stat. Proc., 197, Springer, Berlin, 2010, 3–19 | DOI | MR
[18] V. A. Vatutin, E. E. Dyakonova, “Asymptotic properties of multitype critical branching processes evolving in a random environment”, Discrete Math. Appl., 20:2 (2010), 157–177 | DOI | DOI | MR | Zbl
[19] V. A. Vatutin, “Total population size in critical branching processes in a random environment”, Math. Notes, 91:1 (2012), 12–21 | DOI | DOI | MR | Zbl
[20] V. A. Vatutin, E. E. Dyakonova, S. Sagitov, “Evolution of branching processes in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242 | DOI | MR | Zbl
[21] V. Vatutin, E. Dyakonova, P. Jagers, S. Sagitov, “A decomposable branching process in a Markovian environment”, Int. J. Stoch. Anal., 2012 (2012), 694285, 24 pp. | DOI | MR | Zbl
[22] V. Vatutin, Quansheng Liu, “Branching processes evolving in asynchronous environments”, Proceedings of the 59-th ISI world statistics congress (Hong Kong, 2013), International Statistical Institute, The Hague, The Netherlands, 2013, 1744–1749 2013.isiproceedings.org/Files/STS033-P3-S.pdf
[23] V. Vatutin, Quansheng Liu, “Limit theorems for decomposable branching processes in a random environment”, J. Appl. Probab., 52:3 (2015), 877–893 | DOI | MR | Zbl
[24] V. A. Vatutin, A. M. Zubkov, “Branching processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl
[25] V. A. Vatutin, V. Wachtel, “Sudden extinction of a critical branching process in a random environment”, Theory Probab. Appl., 54:3 (2010), 466–484 | DOI | DOI | MR | Zbl
[26] V. Vatutin, “Subcritical branching processes in random environment”, Branching processes and their applications (Badajoz, Spain, 2015), Lect. Notes Stat., 219, Springer, Cham, 2016, 97–115 | DOI | MR | Zbl
[27] C. Pham, Conditional limit theorems for products of positive random matrices, 2017, arXiv: 1703.04949v1