A factorial moment distance and an~application to the matching problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 617-628

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we introduce the notion of factorial moment distance for nonnegative integer-valued random variables, and we compare it with the total variation distance. Furthermore, we study the rate of convergence in the classical matching problem and in a generalized matching distribution.
Keywords: factorial moment distance, matching problem.
Mots-clés : total variation distance
@article{TVP_2017_62_3_a9,
     author = {G. Afendras and N. Papadatos},
     title = {A factorial moment distance and an~application to the matching problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {617--628},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a9/}
}
TY  - JOUR
AU  - G. Afendras
AU  - N. Papadatos
TI  - A factorial moment distance and an~application to the matching problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 617
EP  - 628
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a9/
LA  - en
ID  - TVP_2017_62_3_a9
ER  - 
%0 Journal Article
%A G. Afendras
%A N. Papadatos
%T A factorial moment distance and an~application to the matching problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 617-628
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a9/
%G en
%F TVP_2017_62_3_a9
G. Afendras; N. Papadatos. A factorial moment distance and an~application to the matching problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 617-628. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a9/