Mots-clés : total variation distance
@article{TVP_2017_62_3_a9,
author = {G. Afendras and N. Papadatos},
title = {A factorial moment distance and an~application to the matching problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {617--628},
year = {2017},
volume = {62},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a9/}
}
G. Afendras; N. Papadatos. A factorial moment distance and an application to the matching problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 617-628. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a9/
[1] A. D. Barbour, L. Holst, S. Janson, Poisson approximation, Oxford Stud. Probab., 2, The Clarendon Press, Oxford Univ. Press, New York, 1992, x+277 pp. | MR | Zbl
[2] Ch. A. Charalambides, Combinatorial methods in discrete distributions, Wiley Ser. Probab. Stat., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2005, xiv+415 pp. | DOI | MR | Zbl
[3] A. DasGupta, The matching problem with random decks and the Poisson approximation, Technical report #99-01, Purdue Univ., West Lafayette, IN, 1999, 18 pp.
[4] A. DasGupta, “The matching, birthday and the strong birthday problem: a contemporary review”, J. Statist. Plann. Inference, 130:1-2 (2005), 377–389 | DOI | MR | Zbl
[5] P. R. de Montmort, Essay d'analyse sur les jeux de hazard, Photographic reprint of the 2nd ed., Chelsea Publishing, New York, 1980, xlii+416 pp. ; 1st ed., 1708; 2nd ed., Jacques Quillau, Paris, 1713 | MR | Zbl
[6] P. Diaconis, “Application of the method of moments in probability and statistics”, Moments in mathematics (San Antonio, Tex., 1987), Proc. Sympos. Appl. Math., 37, Amer. Math. Soc., Providence, RI, 1987, 125–142 | DOI | MR | Zbl
[7] S. Niermann, “A generalization of the matching distribution”, Statist. Papers, 40:2 (1999), 233–238 | DOI | MR | Zbl
[8] Y. H. Wang, “A compound Poisson convergence theorem”, Ann. Probab., 19:1 (1991), 452–455 | DOI | MR | Zbl