Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 610-616 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We represent a certain weight condition such that the exact formula for the asymptotic behavior of small deviation probabilities for weighted sum of independent random variables with a common distribution, which has a power decay at zero, is valid under optimal moment assumptions.
Keywords: small deviations, sums of independent positive random variables, slowly varying functions.
@article{TVP_2017_62_3_a8,
     author = {L. V. Rozovskii},
     title = {Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {610--616},
     year = {2017},
     volume = {62},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a8/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 610
EP  - 616
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a8/
LA  - ru
ID  - TVP_2017_62_3_a8
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 610-616
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a8/
%G ru
%F TVP_2017_62_3_a8
L. V. Rozovskii. Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 610-616. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a8/

[1] F. Aurzada, “On the lower tail probabilities of some random sequences in $l_p$”, J. Theoret. Probab., 20:4 (2007), 843–858 | DOI | MR | Zbl

[2] F. Aurzada, “A short note on small deviations of sequences of i.i.d. random variables with exponentially decreasing weights”, Statist. Probab. Lett., 78:15 (2008), 2300–2307 | DOI | MR | Zbl

[3] A. A. Borovkov, P. S. Ruzankin, “On small deviations of series of weighted random variables”, J. Theoret. Probab., 21:3 (2008), 628–649 | DOI | MR | Zbl

[4] L. Rozovsky, “Small deviations of series of weighted i.i.d. non-negative random variables with a positive mass at the origin”, Statist. Probab. Lett., 79:13 (2009), 1495–1500 | DOI | MR | Zbl

[5] L. V. Rozovsky, “On small deviations of series of weighted positive random variables”, J. Math. Sci. (N. Y.), 176:2 (2011), 224–231 | DOI | MR | Zbl

[6] L. V. Rozovsky, “Small deviations of series of independent nonnegative random variables with smooth weights”, Theory Probab. Appl., 58:1 (2014), 121–137 | DOI | DOI | MR | Zbl

[7] R. A. Davis, S. I. Resnick, “Extremes of moving averages of random variables with finite endpoint”, Ann. Probab., 19:1 (1991), 312–328 | DOI | MR | Zbl

[8] A. A. Borovkov, P. S. Ruzankin, “Small deviations of series of independent positive random variables with weights close to exponential”, Siberian Adv. Math., 18:3 (2008), 163–175 | DOI | MR | MR | Zbl

[9] M. A. Lifshits, “On the lower tail probabilities of some random series”, Ann. Probab., 25:1 (1997), 424–442 | DOI | MR | Zbl

[10] T. Dunker, M. A. Lifshits, W. Linde, “Small deviation probabilities of sums of independent random variables”, High dimensional probability (Oberwolfach, 1996), Progr. Probab., 43, Birkhäuser, Basel, 1998, 59–74 | MR | Zbl

[11] L. V. Rozovsky, “Small deviation probabilities for sums of independent positive random variables”, J. Math. Sci. (N. Y.), 147:4 (2007), 6935–6945 | DOI | MR | Zbl

[12] L. V. Rozovsky, “Small deviation probabilities of weighted sums under minimal moment assumptions”, Statist. Probab. Lett, 86 (2014), 1–6 | DOI | MR | Zbl

[13] L. V. Rozovsky, “Small deviation probabilities of weighted sums with fast decreasing weights”, Probab. Math. Statist., 35:1 (2015), 161–178 | MR | Zbl

[14] L. V. Rozovsky, “Small deviation probabilities for positive random variables”, J. Math. Sci. (N. Y.), 137:1 (2006), 4561–4566 | DOI | MR | Zbl

[15] L. V. Rozovsky, “Small deviation probabilities for a class of distributions with a polynomial decay at zero”, J. Math. Sci. (N. Y.), 139:3 (2006), 6603–6607 | DOI | MR | Zbl