Moment inequalities for $m$-NOD random variables and their applications
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 587-609 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of $m$-negatively orthant dependent ($m$-NOD) random variables is introduced, and the moment inequalities for $m$-NOD random variables, especially the Marcinkiewicz–Zygmund-type inequality and Rosenthal-type inequality, are established. As one application of the moment inequalities, we study the $L_r$ convergence and strong convergence for $m$-NOD random variables under some uniformly integrable conditions. On the other hand, the asymptotic approximation of inverse moments for nonnegative $m$-NOD random variables with finite first moments is established. The results obtained in the paper generalize or improve some known ones for independent sequences and some dependent sequences.
Keywords: $m$-negatively orthant dependent sequence, Marcinkiewicz–Zygmund-type inequalities, Rosenthal inequality.
Mots-clés : $L_r$-convergence, inverse moments
@article{TVP_2017_62_3_a7,
     author = {X. Wang and Sh. H. Hu and A. I. Volodin},
     title = {Moment inequalities for $m${-NOD} random variables and their applications},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {587--609},
     year = {2017},
     volume = {62},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a7/}
}
TY  - JOUR
AU  - X. Wang
AU  - Sh. H. Hu
AU  - A. I. Volodin
TI  - Moment inequalities for $m$-NOD random variables and their applications
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 587
EP  - 609
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a7/
LA  - en
ID  - TVP_2017_62_3_a7
ER  - 
%0 Journal Article
%A X. Wang
%A Sh. H. Hu
%A A. I. Volodin
%T Moment inequalities for $m$-NOD random variables and their applications
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 587-609
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a7/
%G en
%F TVP_2017_62_3_a7
X. Wang; Sh. H. Hu; A. I. Volodin. Moment inequalities for $m$-NOD random variables and their applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 587-609. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a7/

[1] Vu Thi Ngoc Anh, “A strong limit theorem for sequences of blockwise and pairwise negative quadrant $m$-dependent random variables”, Bull. Malays. Math. Sci. Soc. (2), 36 (2013), 159–164 | MR | Zbl

[2] N. Asadian, V. Fakoor, A. Bozorgnia, “Rosenthal's type inequalities for negatively orthant dependent random variables”, J. Iran. Stat. Soc., 5:1-2 (2006), 69–75 | Zbl

[3] L. E. Baum, M. Katz, “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120:1 (1965), 108–123 | DOI | MR | Zbl

[4] A. Bozorgnia, R. F. Patterson, R. L. Taylor, “Limit theorems for dependent random variables”, World congress of nonlinear analysts {'}92 (Tampa, FL, 1992), de Gruyter, Berlin, 1996, 1639–1650 | MR | Zbl

[5] M. T. Chao, W. E. Strawderman, “Negative moments of positive random variables”, J. Amer. Statist. Assoc., 67:338 (1972), 429–431 | DOI | Zbl

[6] Pingyan Chen, M. O. Cabrera, A. Volodin, “$L_1$-convergence for weighted sums of some dependent random variables”, Stoch. Anal. Appl., 28:6 (2010), 928–936 | DOI | MR | Zbl

[7] T. Fujioka, “Asymptotic approximations of the inverse moment of the non-central chi-squared variable”, J. Japan Statist. Soc., 31:1 (2001), 99–109 | DOI | MR | Zbl

[8] N. L. Garcia, J. L. Palacios, “On inverse moments of nonnegative random variables”, Statist. Probab. Lett., 53:3 (2001), 235–239 | DOI | MR | Zbl

[9] Shuhe Hu, Xinghui Wang, Wenzhi Yang, Xuejun Wang, “A note on the inverse moment for the non negative random variables”, Comm. Statist. Theory Methods, 43:8 (2014), 1750–1757 | DOI | MR | Zbl

[10] Tien-Chung Hu, Chen-Yu Chiang, R. L. Taylor, “On complete convergence for arrays of rowwise $m$-negatively associated random variables”, Nonlinear Anal., 71:12 (2009), e1075–e1081 | DOI | MR | Zbl

[11] Taizhong Hu, “Negatively superadditive dependence of random variables with applications”, Chinese J. Appl. Probab. Statist., 16:2 (2000), 133–144 | MR | Zbl

[12] Taizhong Hu, Jianping Yang, “Further developments on sufficient conditions for negative dependence of random variables”, Statist. Probab. Lett., 66:3 (2004), 369–381 | DOI | MR | Zbl

[13] Taizhong Hu, Chaode Xie, Lingyan Ruan, “Dependence structures of multivariate Bernoulli random vectors”, J. Multivariate Anal., 94:1 (2005), 172–195 | DOI | MR | Zbl

[14] K. Joag-Dev, F. Proschan, “Negative association of random variables with applications”, Ann. Statist., 11:1 (1983), 286–295 | DOI | MR | Zbl

[15] M. Kaluszka, A. Okolewski, “On Fatou-type lemma for monotone moments of weakly convergent random variables”, Statist. Probab. Lett., 66:1 (2004), 45–50 | DOI | MR | Zbl

[16] O. Klesov, A. Rosalsky, A. I. Volodin, “On the almost sure growth rate of sums of lower negatively dependent nonnegative random variables”, Statist. Probab. Lett., 71:2 (2005), 193–202 | DOI | MR | Zbl

[17] M. Ordóñez Cabrera, A. I. Volodin, “Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability”, J. Math. Anal. Appl., 305:2 (2005), 644–658 | DOI | MR | Zbl

[18] M. Ordóñez Cabrera, A. Rosalsky, A. Volodin, “Some theorems on conditional mean convergence and conditional almost sure convergence for randomly weighted sums of dependent random variables”, Test, 21:2 (2012), 369–385 | DOI | MR | Zbl

[19] Dehua Qiu, Kuang-Chao Chang, R. Giuliano Antonini, A. Volodin, “On the strong rates of convergence for arrays of rowwise negatively dependent random variables”, Stoch. Anal. Appl., 29:3 (2011), 375–385 | DOI | MR | Zbl

[20] Qi-Man Shao, “Maximal inequalities for partial sums of $\rho$-mixing sequences”, Ann. Probab., 23:2 (1995), 948–965 | DOI | MR | Zbl

[21] Qi-Man Shao, “A comparison theorem on moment inequalities between negatively associated and independent random variables”, J. Theoret. Probab., 13:2 (2000), 343–356 | DOI | MR | Zbl

[22] Aiting Shen, “Probability inequalities for END sequence and their applications”, J. Inequal. Appl., 2011 (2011), 98, 12 pp. | DOI | MR | Zbl

[23] Aiting Shen, “On the strong convergence rate for weighted sums of arrays of rowwise negatively orthant dependent random variables”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 107:2 (2013), 257–271 | DOI | MR | Zbl

[24] Aiting Shen, “On asymptotic approximation of inverse moments for a class of nonnegative random variables”, Statistics, 48:6 (2014), 1371–1379 | DOI | MR | Zbl

[25] Aiting Shen, Ranchao Wu, Yan Chen, Yu Zhou, “Conditional convergence for randomly weighted sums of random variables based on conditional residual $h$-integrability”, J. Inequal. Appl., 2013 (2013), 122, 11 pp. | DOI | MR | Zbl

[26] Xiaoping Shi, Yuehua Wu, Yu Liu, “A note on asymptotic approximations of inverse moments of nonnegative random variables”, Statist. Probab. Lett., 80:15-16 (2010), 1260–1264 | DOI | MR | Zbl

[27] Xiaoping Shi, N. Reid, Yuehua Wu, “Approximation to the moments of ratios of cumulative sums”, Canad. J. Statist., 42:2 (2014), 325–336 | DOI | MR | Zbl

[28] W. F. Stout, Almost sure convergence, Probab. Math. Statist., 24, Academic Press, New York–London, 1974, x+381 pp. | MR | Zbl

[29] Soo Hak Sung, S. Lisawadi, A. Volodin, “Weak laws of large numbers for arrays under a condition of uniform integrability”, J. Korean Math. Soc., 45:1 (2008), 289–300 | DOI | MR | Zbl

[30] Soo Hak Sung, “Convergence in $r$-mean of weighted sums of NQD random variables”, Appl. Math. Lett., 26:1 (2013), 18–24 | DOI | MR | Zbl

[31] R. L. Taylor, R. F. Patterson, A. Bozorgnia, “A strong law of large numbers for arrays of rowwise negatively dependent random variables”, Stochastic Anal. Appl., 20:3 (2002), 643–656 | DOI | MR | Zbl

[32] S. Utev, M. Peligrad, “Maximal inequalities and an invariance principle for a class of weakly dependent random variables”, J. Theoret. Probab., 16:1 (2003), 101–115 | DOI | MR | Zbl

[33] A. Volodin, “On the Kolmogorov exponential inequality for negatively dependent random variables”, Pakistan J. Statist., 18:2 (2002), 249–253 | MR | Zbl

[34] Jiang Feng Wang, Feng Bin Lu, “Inequalities of maximum of partial sums and weak convergence for a class of weak dependent random variables”, Acta Math. Sin. (Engl. Ser.), 22:3 (2006), 693–700 | DOI | MR | Zbl

[35] Xinghui Wang, Shuhe Hu, “Weak laws of large numbers for arrays of dependent random variables”, Stochastics, 86:5 (2014), 759–775 | DOI | MR | Zbl

[36] Xuejun Wang, Shuhe Hu, Wenzhi Yang, Yan Shen, “On complete convergence for weighed sums of $\varphi$-mixing random variables”, J. Inequal. Appl., 2010 (2010), 372390, 13 pp. | DOI | MR | Zbl

[37] Xuejun Wang, Shuhe Hu, Wenzhi Yang, Nengxiang Ling, “Exponential inequalities and inverse moment for NOD sequence”, Statist. Probab. Lett., 80:5-6 (2010), 452–461 | DOI | MR | Zbl

[38] Xuejun Wang, Shuhe Hu, Wenzhi Yang, “Complete convergence for arrays of rowwise negatively orthant dependent random variables”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 106:2 (2012), 235–245 | DOI | MR | Zbl

[39] Xuejun Wang, Xin Deng, Lulu Zheng, Shuhe Hu, “Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications”, Statistics, 48:4 (2014), 834–850 | DOI | MR | Zbl

[40] Qunying Wu, Probability limit theory of mixing sequences, Science Press of China, Beijing, 2006 (in Chinese)

[41] Qunying Wu, “A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables”, J. Inequal. Appl., 2012 (2012), 50, 10 pp. | DOI | MR | Zbl

[42] Qunying Wu, Yuanying Jiang, “The strong consistency of $M$ estimator in a linear model for negatively dependent random samples”, Comm. Statist. Theory Methods, 40:3 (2011), 467–491 | DOI | MR | Zbl

[43] Tiee-Jian Wu, Xiaoping Shi, Baiqi Miao, “Asymptotic approximation of inverse moments of nonnegative random variables”, Statist. Probab. Lett., 79:11 (2009), 1366–1371 | DOI | MR | Zbl

[44] Yongfeng Wu, Mei Guan, “Mean convergence theorems and weak laws of large numbers for weighted sums of dependent random variables”, J. Math. Anal. Appl., 377:2 (2011), 613–623 | DOI | MR | Zbl

[45] Yongfeng Wu, M. Ordóñez Cabrera, A. Volodin, “On limiting behavior for arrays of rowwise negatively orthant dependent random variables”, J. Korean Statist. Soc, 42 (2013), 61–70 | DOI | MR | Zbl

[46] Yongfeng Wu, A. Rosalsky, “Strong convergence for $m$-pairwise negatively quadrant dependent random variables”, Glas. Mat. Ser. III, 50(70):1 (2015), 245–259 | DOI | MR | Zbl

[47] Wenzhi Yang, Shuhe Hu, Xuejun Wang, “On the asymptotic approximation of inverse moment for non negative random variables”, Comm. Statist. Theory Methods, 46:16 (2017), 7787–7797 | DOI

[48] Demei Yuan, Bao Tao, “Mean convergence theorems for weighted sums of arrays of residually $h$-integrable random variables concerning the weights under dependence assumptions”, Acta Appl. Math., 103:3 (2008), 221–234 | DOI | MR | Zbl

[49] DeMei Yuan, Jun An, “Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications”, Sci. China Ser. A, 52:9 (2009), 1887–1904 | DOI | MR | Zbl

[50] H. Zarei, H. Jabbari, “Complete convergence of weighted sums under negative dependence”, Statist. Papers, 52:2 (2011), 413–418 | DOI | MR | Zbl

[51] L.-X. Zhang, “A functional central limit theorem for asymptotically negatively dependent random fields”, Acta Math. Hungar., 86:3 (2000), 237–259 | DOI | MR | Zbl