Keywords: sample covariance matrices, times series.
@article{TVP_2017_62_3_a5,
author = {P. A. Yaskov},
title = {On a spectrum of sample covariation matrices for time series},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {542--555},
year = {2017},
volume = {62},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a5/}
}
P. A. Yaskov. On a spectrum of sample covariation matrices for time series. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 542-555. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a5/
[1] R. Adamczak, “Some remarks on the Dozier–Silverstein theorem for random matrices with dependent entries”, Random Matrices Theory Appl., 2:2 (2013), 1250017, 46 pp. | DOI | MR | Zbl
[2] S. Anatolyev, P. Yaskov, “Asymptotics of diagonal elements of projection matrices under many instruments/regressors”, Econometric Theory, 33:3 (2017), 717–738 | DOI | MR
[3] Z. D. Bai, “Methodologies in spectral analysis of large dimensional random matrices, a review”, Statist. Sinica, 9:3 (1999), 611–677 | MR | Zbl
[4] Zhidong Bai, Wang Zhou, “Large sample covariance matrices without independence structures in columns”, Statist. Sinica, 18:2 (2008), 425–442 | MR | Zbl
[5] M. Banna, “Limiting spectral distribution of Gram matrices associated with functionals of $\beta$-mixing processes”, J. Math. Anal. Appl., 433:1 (2016), 416–433 | DOI | MR | Zbl
[6] M. Banna, F. Merlevède, M. Peligrad, “On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries”, Stochastic Process. Appl., 125:7 (2015), 2700–2726 | DOI | MR | Zbl
[7] M. Bhattacharjee, A. Bose, “Large sample behaviour of high dimensional autocovariance matrices”, Ann. Statist., 44:2 (2016), 598–628 | DOI | MR | Zbl
[8] N. El Karoui, “Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond”, Ann. Appl. Probab., 19:6 (2009), 2362–2405 | DOI | MR | Zbl
[9] N. El Karoui, “High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: risk underestimation”, Ann. Statist., 38:6 (2010), 3487–3566 | DOI | MR | Zbl
[10] V. L. Girko, A. K. Gupta, “Asymptotic behavior of spectral function of empirical covariance matrices”, Random Oper. Stochastic Equations, 2:1 (1994), 43–60 | DOI | MR | Zbl
[11] Haoyang Liu, A. Aue, D. Paul, “On the Marčenko–Pastur law for linear time series”, Ann. Statist., 43:2 (2015), 675–712 | DOI | MR | Zbl
[12] J. R. Magnus, “The moments of products of quadratic forms in normal variables”, Statist. Neerlandica, 32:4 (1978), 201–210 | DOI | MR | Zbl
[13] V. A. Marchenko, L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices”, Math. USSR-Sb., 1:4 (1967), 457–483 | DOI | MR | Zbl
[14] O. Pfaffel, E. Schlemm, “Limiting spectral distribution of a new random matrix model with dependence across rows and columns”, Linear Algebra Appl., 436:9 (2012), 2966–2979 | DOI | MR | Zbl
[15] T. Tao, Topics in random matrix theory, Grad. Stud. Math., 132, Amer. Math. Soc., Providence, RI, 2012, x+282 pp. | DOI | MR | Zbl
[16] P. Yaskov, “Variance inequalities for quadratic forms with applications”, Math. Methods Statist., 24:4 (2015), 309–319 | DOI | MR | Zbl
[17] P. Yaskov, “Necessary and sufficient conditions for the Marchenko–Pastur theorem”, Electron. Commun. Probab., 21 (2016), 73, 8 pp. | DOI | MR | Zbl
[18] P. Yaskov, “A short proof of the Marchenko–Pastur theorem”, C. R. Math. Acad. Sci. Paris, 354:3 (2016), 319–322 | DOI | MR
[19] P. Yaskov, “LLN for quadratic forms of long memory time series and its applications in random matrix theory”, J. Theoret. Probab. (to appear) | DOI