On a spectrum of sample covariation matrices for time series
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 542-555 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the spectrum of the sample covariance matrix corresponding to an $R^p$-valued time series of length $n$. Under the assumption $p/n\to\rho >0$ conditions are put forward to guarantee the universality property of the limiting spectral distribution of these matrices (it has the same form as in the case of Gaussian time series). These conditions amount to requiring that the quadratic forms of the values of the series be close to its means.
Mots-clés : random matrices
Keywords: sample covariance matrices, times series.
@article{TVP_2017_62_3_a5,
     author = {P. A. Yaskov},
     title = {On a spectrum of sample covariation matrices for time series},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {542--555},
     year = {2017},
     volume = {62},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a5/}
}
TY  - JOUR
AU  - P. A. Yaskov
TI  - On a spectrum of sample covariation matrices for time series
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 542
EP  - 555
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a5/
LA  - ru
ID  - TVP_2017_62_3_a5
ER  - 
%0 Journal Article
%A P. A. Yaskov
%T On a spectrum of sample covariation matrices for time series
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 542-555
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a5/
%G ru
%F TVP_2017_62_3_a5
P. A. Yaskov. On a spectrum of sample covariation matrices for time series. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 542-555. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a5/

[1] R. Adamczak, “Some remarks on the Dozier–Silverstein theorem for random matrices with dependent entries”, Random Matrices Theory Appl., 2:2 (2013), 1250017, 46 pp. | DOI | MR | Zbl

[2] S. Anatolyev, P. Yaskov, “Asymptotics of diagonal elements of projection matrices under many instruments/regressors”, Econometric Theory, 33:3 (2017), 717–738 | DOI | MR

[3] Z. D. Bai, “Methodologies in spectral analysis of large dimensional random matrices, a review”, Statist. Sinica, 9:3 (1999), 611–677 | MR | Zbl

[4] Zhidong Bai, Wang Zhou, “Large sample covariance matrices without independence structures in columns”, Statist. Sinica, 18:2 (2008), 425–442 | MR | Zbl

[5] M. Banna, “Limiting spectral distribution of Gram matrices associated with functionals of $\beta$-mixing processes”, J. Math. Anal. Appl., 433:1 (2016), 416–433 | DOI | MR | Zbl

[6] M. Banna, F. Merlevède, M. Peligrad, “On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries”, Stochastic Process. Appl., 125:7 (2015), 2700–2726 | DOI | MR | Zbl

[7] M. Bhattacharjee, A. Bose, “Large sample behaviour of high dimensional autocovariance matrices”, Ann. Statist., 44:2 (2016), 598–628 | DOI | MR | Zbl

[8] N. El Karoui, “Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond”, Ann. Appl. Probab., 19:6 (2009), 2362–2405 | DOI | MR | Zbl

[9] N. El Karoui, “High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: risk underestimation”, Ann. Statist., 38:6 (2010), 3487–3566 | DOI | MR | Zbl

[10] V. L. Girko, A. K. Gupta, “Asymptotic behavior of spectral function of empirical covariance matrices”, Random Oper. Stochastic Equations, 2:1 (1994), 43–60 | DOI | MR | Zbl

[11] Haoyang Liu, A. Aue, D. Paul, “On the Marčenko–Pastur law for linear time series”, Ann. Statist., 43:2 (2015), 675–712 | DOI | MR | Zbl

[12] J. R. Magnus, “The moments of products of quadratic forms in normal variables”, Statist. Neerlandica, 32:4 (1978), 201–210 | DOI | MR | Zbl

[13] V. A. Marchenko, L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices”, Math. USSR-Sb., 1:4 (1967), 457–483 | DOI | MR | Zbl

[14] O. Pfaffel, E. Schlemm, “Limiting spectral distribution of a new random matrix model with dependence across rows and columns”, Linear Algebra Appl., 436:9 (2012), 2966–2979 | DOI | MR | Zbl

[15] T. Tao, Topics in random matrix theory, Grad. Stud. Math., 132, Amer. Math. Soc., Providence, RI, 2012, x+282 pp. | DOI | MR | Zbl

[16] P. Yaskov, “Variance inequalities for quadratic forms with applications”, Math. Methods Statist., 24:4 (2015), 309–319 | DOI | MR | Zbl

[17] P. Yaskov, “Necessary and sufficient conditions for the Marchenko–Pastur theorem”, Electron. Commun. Probab., 21 (2016), 73, 8 pp. | DOI | MR | Zbl

[18] P. Yaskov, “A short proof of the Marchenko–Pastur theorem”, C. R. Math. Acad. Sci. Paris, 354:3 (2016), 319–322 | DOI | MR

[19] P. Yaskov, “LLN for quadratic forms of long memory time series and its applications in random matrix theory”, J. Theoret. Probab. (to appear) | DOI