Spectral asymptotics of supercritical branching random process
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 518-541 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with supercritical continuous-time random walks on a multidimensional lattice with finite number of sources of particle generation of the same intensity without any constraint on the variance of jumps. For the evolution operator of the mean population size of particles with nearly critical source intensity, the asymptotic behavior of the Green function and of the eigenvalue is found. The effect of “limit coalescence” of eigenvalues is revealed for such an arrangement of sources that the distances between them go off to infinity.
Keywords: branching random walks, convolution-type operators, Green functions, positive eigenvalues.
Mots-clés : multipoint perturbations
@article{TVP_2017_62_3_a4,
     author = {E. B. Yarovaya},
     title = {Spectral asymptotics of supercritical branching random process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {518--541},
     year = {2017},
     volume = {62},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a4/}
}
TY  - JOUR
AU  - E. B. Yarovaya
TI  - Spectral asymptotics of supercritical branching random process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 518
EP  - 541
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a4/
LA  - ru
ID  - TVP_2017_62_3_a4
ER  - 
%0 Journal Article
%A E. B. Yarovaya
%T Spectral asymptotics of supercritical branching random process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 518-541
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a4/
%G ru
%F TVP_2017_62_3_a4
E. B. Yarovaya. Spectral asymptotics of supercritical branching random process. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 518-541. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a4/

[1] A. Agbor, S. Molchanov, B. Vainberg, “Global limit theorems on the convergence of multidimensional random walks to stable processes”, Stoch. Dyn., 15:3 (2015), 1550024, 14 pp. ; arXiv: 1405.2487 | DOI | MR | Zbl

[2] S. Albeverio, L. V. Bogachev, “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4:1 (2000), 41–100 | DOI | MR | Zbl

[3] S. Albeverio, L. V. Bogachev, E. B. Yarovaya, “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris Sér. I Math., 326:8 (1998), 975–980 | DOI | MR | Zbl

[4] S. Albeverio, L. V. Bogachev, E. B. Yarovaya, “Branching random walk with a single source”, Communications in difference equations (Poznan, 1998), Gordon and Breach, Amsterdam, 2000, 9–19 | MR | Zbl

[5] K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer-Verlag, New York–Heidelberg, 1972, xi+287 pp. | MR | Zbl

[6] N. K. Bary, A treatise on trigonometric series, v. I, II, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[7] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert $W$ function”, Adv. Comput. Math., 5:4 (1996), 329–359 | DOI | MR | Zbl

[8] Yu. L. Daleckii, M. G. Krein, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | MR | MR | Zbl | Zbl

[9] W. Feller, An introduction to probability theory and its applications, v. 1, 2, John Wiley Sons, Inc., New York–London–Sydney, 1968, 1971, xviii+509 pp., xxiv+669 pp. | MR | MR | MR | MR | Zbl | Zbl

[10] I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, v. II, Grundlehren Math. Wiss., 218, Springer-Verlag, New York–Heidelberg, 1975, vii+441 pp. | MR | MR | Zbl | Zbl

[11] S. A. Molchanov, E. B. Yarovaya, “Branching processes with lattice spatial dynamics and a finite set of particle generation centers”, Dokl. Math., 86:2 (2012), 638–641 | DOI | MR | Zbl

[12] S. A. Molchanov, E. B. Yarovaya, “Population structure inside the propagation front of a branching random walk with finitely many centers of particle generation”, Dokl. Math., 86:3 (2012), 787–790 | DOI | MR | Zbl

[13] A. G. Postnikov, “Tauberian theory and its applications”, Proc. Steklov Inst. Math., 144 (1980), 1–138 | MR | Zbl

[14] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl

[15] V. A. Vatutin, V. A. Topchii, “Limit theorem for critical catalytic branching random walks”, Theory Probab. Appl., 49:3 (2005), 498–518 | DOI | DOI | MR | Zbl

[16] V. A. Vatutin, V. A. Topchii, E. B. Yarovaya, “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory Probab. Math. Statist., 2004, no. 69, 1–15 | DOI | MR | Zbl

[17] D. V. Widder, The Laplace transform, Princeton Math. Series, 6, Princeton Univ. Press, Princeton, NJ, 1941, x+406 pp. | MR | Zbl

[18] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekh.-matem. f-te MGU, M., 2007, 104 pp.

[19] E. B. Yarovaya, “Criteria of exponential growth for the numbers of particles in models of branching random walks”, Theory Probab. Appl., 55:4 (2011), 661–682 | DOI | DOI | MR | Zbl

[20] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI | DOI | MR | Zbl

[21] E. Yarovaya, “Branching random walks with heavy tails”, Comm. Statist. Theory Methods, 42:16 (2013), 3001–3010 | DOI | MR | Zbl

[22] E. B. Yarovaya, “Branching random walks with several sources”, Math. Popul. Stud., 20:1 (2013), 14–26 | DOI | MR

[23] E. B. Yarovaya, “The structure of the positive discrete spectrum of the evolution operator arising in branching random walks”, Dokl. Math., 92:1 (2015), 507–510 | DOI | DOI | MR | Zbl

[24] E. Yarovaya, “Positive discrete spectrum of the evolutionary operator of supercritical branching walks with heavy tails”, Methodol. Comput. Appl. Probab. (to appear) , 17 pp., first online 2016 | DOI