Mots-clés : multipoint perturbations
@article{TVP_2017_62_3_a4,
author = {E. B. Yarovaya},
title = {Spectral asymptotics of supercritical branching random process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {518--541},
year = {2017},
volume = {62},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a4/}
}
E. B. Yarovaya. Spectral asymptotics of supercritical branching random process. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 518-541. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a4/
[1] A. Agbor, S. Molchanov, B. Vainberg, “Global limit theorems on the convergence of multidimensional random walks to stable processes”, Stoch. Dyn., 15:3 (2015), 1550024, 14 pp. ; arXiv: 1405.2487 | DOI | MR | Zbl
[2] S. Albeverio, L. V. Bogachev, “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4:1 (2000), 41–100 | DOI | MR | Zbl
[3] S. Albeverio, L. V. Bogachev, E. B. Yarovaya, “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris Sér. I Math., 326:8 (1998), 975–980 | DOI | MR | Zbl
[4] S. Albeverio, L. V. Bogachev, E. B. Yarovaya, “Branching random walk with a single source”, Communications in difference equations (Poznan, 1998), Gordon and Breach, Amsterdam, 2000, 9–19 | MR | Zbl
[5] K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer-Verlag, New York–Heidelberg, 1972, xi+287 pp. | MR | Zbl
[6] N. K. Bary, A treatise on trigonometric series, v. I, II, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl
[7] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert $W$ function”, Adv. Comput. Math., 5:4 (1996), 329–359 | DOI | MR | Zbl
[8] Yu. L. Daleckii, M. G. Krein, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | MR | MR | Zbl | Zbl
[9] W. Feller, An introduction to probability theory and its applications, v. 1, 2, John Wiley Sons, Inc., New York–London–Sydney, 1968, 1971, xviii+509 pp., xxiv+669 pp. | MR | MR | MR | MR | Zbl | Zbl
[10] I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, v. II, Grundlehren Math. Wiss., 218, Springer-Verlag, New York–Heidelberg, 1975, vii+441 pp. | MR | MR | Zbl | Zbl
[11] S. A. Molchanov, E. B. Yarovaya, “Branching processes with lattice spatial dynamics and a finite set of particle generation centers”, Dokl. Math., 86:2 (2012), 638–641 | DOI | MR | Zbl
[12] S. A. Molchanov, E. B. Yarovaya, “Population structure inside the propagation front of a branching random walk with finitely many centers of particle generation”, Dokl. Math., 86:3 (2012), 787–790 | DOI | MR | Zbl
[13] A. G. Postnikov, “Tauberian theory and its applications”, Proc. Steklov Inst. Math., 144 (1980), 1–138 | MR | Zbl
[14] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl
[15] V. A. Vatutin, V. A. Topchii, “Limit theorem for critical catalytic branching random walks”, Theory Probab. Appl., 49:3 (2005), 498–518 | DOI | DOI | MR | Zbl
[16] V. A. Vatutin, V. A. Topchii, E. B. Yarovaya, “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory Probab. Math. Statist., 2004, no. 69, 1–15 | DOI | MR | Zbl
[17] D. V. Widder, The Laplace transform, Princeton Math. Series, 6, Princeton Univ. Press, Princeton, NJ, 1941, x+406 pp. | MR | Zbl
[18] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekh.-matem. f-te MGU, M., 2007, 104 pp.
[19] E. B. Yarovaya, “Criteria of exponential growth for the numbers of particles in models of branching random walks”, Theory Probab. Appl., 55:4 (2011), 661–682 | DOI | DOI | MR | Zbl
[20] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI | DOI | MR | Zbl
[21] E. Yarovaya, “Branching random walks with heavy tails”, Comm. Statist. Theory Methods, 42:16 (2013), 3001–3010 | DOI | MR | Zbl
[22] E. B. Yarovaya, “Branching random walks with several sources”, Math. Popul. Stud., 20:1 (2013), 14–26 | DOI | MR
[23] E. B. Yarovaya, “The structure of the positive discrete spectrum of the evolution operator arising in branching random walks”, Dokl. Math., 92:1 (2015), 507–510 | DOI | DOI | MR | Zbl
[24] E. Yarovaya, “Positive discrete spectrum of the evolutionary operator of supercritical branching walks with heavy tails”, Methodol. Comput. Appl. Probab. (to appear) , 17 pp., first online 2016 | DOI