Heyde's characterization theorem for some locally compact Abelian groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 499-517

Voir la notice de l'article provenant de la source Math-Net.Ru

By Heyde's theorem, the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of $n$ independent random variables with the other fixed. When $n=2$ we prove analogues of this theorem in the case when independent random variables take values in a locally compact Abelian group $X$ and coefficients of the linear forms are topological automorphisms of $X$.
Keywords: locally compact Abelian group, Gaussian distribution, conditional distribution.
@article{TVP_2017_62_3_a3,
     author = {G. M. Feldman},
     title = {Heyde's characterization theorem for some locally compact {Abelian} groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {499--517},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a3/}
}
TY  - JOUR
AU  - G. M. Feldman
TI  - Heyde's characterization theorem for some locally compact Abelian groups
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 499
EP  - 517
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a3/
LA  - ru
ID  - TVP_2017_62_3_a3
ER  - 
%0 Journal Article
%A G. M. Feldman
%T Heyde's characterization theorem for some locally compact Abelian groups
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 499-517
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a3/
%G ru
%F TVP_2017_62_3_a3
G. M. Feldman. Heyde's characterization theorem for some locally compact Abelian groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 499-517. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a3/