Heyde's characterization theorem for some locally compact Abelian groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 499-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By Heyde's theorem, the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of $n$ independent random variables with the other fixed. When $n=2$ we prove analogues of this theorem in the case when independent random variables take values in a locally compact Abelian group $X$ and coefficients of the linear forms are topological automorphisms of $X$.
Keywords: locally compact Abelian group, Gaussian distribution, conditional distribution.
@article{TVP_2017_62_3_a3,
     author = {G. M. Feldman},
     title = {Heyde's characterization theorem for some locally compact {Abelian} groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {499--517},
     year = {2017},
     volume = {62},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a3/}
}
TY  - JOUR
AU  - G. M. Feldman
TI  - Heyde's characterization theorem for some locally compact Abelian groups
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 499
EP  - 517
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a3/
LA  - ru
ID  - TVP_2017_62_3_a3
ER  - 
%0 Journal Article
%A G. M. Feldman
%T Heyde's characterization theorem for some locally compact Abelian groups
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 499-517
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a3/
%G ru
%F TVP_2017_62_3_a3
G. M. Feldman. Heyde's characterization theorem for some locally compact Abelian groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 499-517. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a3/

[1] C. C. Heyde, “Characterization of the normal low by the symmetry of a certain conditional distribution”, Sankhyā Ser. A, 32 (1970), 115–118 | MR | Zbl

[2] A. M. Kagan, Yu. V. Linnik, C. R. Rao, Characterization problems in mathematical statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley Sons, New York–London–Sydney, 1973, xii+499 pp. | MR | MR | Zbl | Zbl

[3] G. M. Feldman, “On the Heyde theorem for finite Abelian groups”, J. Theoret. Probab., 17:4 (2004), 929–941 | DOI | MR | Zbl

[4] M. V. Mironyuk, G. M. Feldman, “On a characterization theorem on finite Abelian groups”, Siberian Math. J., 46:2 (2005), 315–324 | DOI | MR | Zbl

[5] G. M. Feldman, “On a characterization theorem for locally compact abelian groups”, Probab. Theory Related Fields, 133:3 (2005), 345–357 | DOI | MR | Zbl

[6] G. M. Feldman, “On the Heyde theorem for discrete Abelian groups”, Studia Math., 177:1 (2006), 67–79 | DOI | MR | Zbl

[7] G. M. Feldman, “The Heyde theorem for locally compact Abelian groups”, J. Funct. Anal., 258:12 (2010), 3977–3987 | DOI | MR | Zbl

[8] M. V. Myronyuk, “Heyde's characterization theorem for discrete abelian groups”, J. Aust. Math. Soc., 88:1 (2010), 93–102 | DOI | MR | Zbl

[9] G. M. Feldman, “On a characterization of convolutions of Gaussian and Haar distributions”, Math. Nachr., 286:4 (2013), 340–348 | DOI | MR | Zbl

[10] M. Myronyuk, “The Heyde theorem on $a$-adic solenoids”, Colloq. Math., 132:2 (2013), 195–210 | DOI | MR | Zbl

[11] G. Feldman, “On a characterization theorem for the group of $p$-adic numbers”, Publ. Math. Debrecen, 87:1-2 (2015), 147–166 | DOI | MR | Zbl

[12] G. Feldman, Functional equations and characterization problems on locally compact Abelian groups, EMS Tracts Math., 5, Eur. Math. Soc., Zürich, 2008, xii+256 pp. | DOI | MR | Zbl

[13] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. I, Grundlehren Math. Wiss., 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, viii+519 pp. | DOI | MR | MR | Zbl

[14] K. R. Parthasarathy, Probability measures on metric spaces, Probab. Math. Statist., 3, Academic Press, Inc., New York–London, 1967, xi+276 pp. | MR | Zbl

[15] S. G. Ghurye, I. Olkin, “A characterization of the multivariate normal distribution”, Ann. Math. Statist., 33:2 (1962), 533–541 | DOI | MR | Zbl

[16] Yu. V. Linnik, I. V. Ostrovskii, Decomposition of random variables and vectors, Transl. Math. Monogr., 48, Amer. Math. Soc., Providence, RI, 1977, ix+380 pp. | MR | MR | Zbl | Zbl

[17] G. M. Feldman, “More on the Skitovich–Darmois theorem for finite Abelian groups”, Theory Probab. Appl., 45:3 (2001), 507–511 | DOI | DOI | MR | Zbl

[18] L. Fuchs, Infinite abelian groups, v. II, Pure Appl. Math., 36, Academic Press, New York–London, 1973, ix+363 pp. | MR | MR | Zbl

[19] G. M. Fel'dman, “On the decomposition of Gaussian distributions on groups”, Theory Probab. Appl., 22:1 (1977), 133–140 | DOI | MR | Zbl