Heyde's characterization theorem for some locally compact Abelian groups
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 499-517
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			By Heyde's theorem, the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of $n$ independent random variables with the other fixed. When $n=2$ we prove analogues of this theorem in the case when independent random variables take values in a locally compact Abelian group $X$ and coefficients of the linear forms are topological automorphisms of $X$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
locally compact Abelian group, Gaussian distribution, conditional distribution.
                    
                  
                
                
                @article{TVP_2017_62_3_a3,
     author = {G. M. Feldman},
     title = {Heyde's characterization theorem for some locally compact {Abelian} groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {499--517},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a3/}
}
                      
                      
                    G. M. Feldman. Heyde's characterization theorem for some locally compact Abelian groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 499-517. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a3/
