Asymptotic properties of one-step weighted $M$-estimators with application to some regression problems.
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 468-498 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotic behavior of one-step weighted $M$-estimators based on independent not necessarily identically distributed observations, which approximate consistent weighted $M$-estimators. We find sufficient conditions for asymptotic normality of these estimators. As an application, we consider some known regression models where the one-step estimation under consideration allows us to construct explicit asymptotically optimal estimators having the same accuracy as the least-squares or quasi-likelihood estimators.
Keywords: one-step $M$-estimators, one-step weighted $M$-estimators, $M$-estimators, asymptotic normality, Newton's iteration method, initial estimator, nonlinear regression.
@article{TVP_2017_62_3_a2,
     author = {Yu. Yu. Linke},
     title = {Asymptotic properties of one-step weighted $M$-estimators with application to some regression problems.},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {468--498},
     year = {2017},
     volume = {62},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a2/}
}
TY  - JOUR
AU  - Yu. Yu. Linke
TI  - Asymptotic properties of one-step weighted $M$-estimators with application to some regression problems.
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 468
EP  - 498
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a2/
LA  - ru
ID  - TVP_2017_62_3_a2
ER  - 
%0 Journal Article
%A Yu. Yu. Linke
%T Asymptotic properties of one-step weighted $M$-estimators with application to some regression problems.
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 468-498
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a2/
%G ru
%F TVP_2017_62_3_a2
Yu. Yu. Linke. Asymptotic properties of one-step weighted $M$-estimators with application to some regression problems.. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 468-498. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a2/

[1] A. A. Borovkov, Mathematical statistics, Gordon Breach, Amsterdam, 1998, xxii+570 pp. | MR | Zbl | Zbl

[2] A. A. Borovkov, Probability theory, Universitext, Springer, London, 2013, xxviii+733 pp. | DOI | MR | MR | Zbl | Zbl

[3] N. Draper, G. Smit, Applied regression analysis, John Wiley Sons, Inc., New York–London–Sydney, 1966, ix+407 pp. | MR | Zbl | Zbl

[4] Sh. Zacks, The theory of statistical inference, Wiley Ser. Probab. Math. Statist., John Wiley Sons, Inc., New York–London–Sydney, 1971, xiii+609 pp. | MR | MR | Zbl

[5] E. L. Lehmann, Theory of point estimation, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1983, xii+506 pp. | MR | MR | Zbl | Zbl

[6] Yu. Yu. Linke, “Refinement of Fisher's one-step estimators in the case of slowly converging initial estimators”, Theory Probab. Appl., 60:1 (2016), 88–102 | DOI | DOI | MR | Zbl

[7] Yu. Yu. Linke, “On the asymptotics of distributions of two-step statistical estimates”, Siberian Math. J., 52:4 (2011), 665–681 | DOI | MR | Zbl

[8] Yu. Yu. Linke, A. I. Sakhanenko, “On asymptotics of the distributions of some two-step statistical estimators of a mutlidimensional parameter”, Siberian Adv. Math., 24:2 (2014), 119–139 | DOI | MR | Zbl

[9] Yu. Yu. Linke, A. I. Sakhanenko, “Ob usloviyakh asimptoticheskoi normalnosti odnoshagovykh otsenok Fishera dlya odnoparametricheskikh semeistv raspredelenii”, Sib. elektron. matem. izv., 11 (2014), 464–475 | MR | Zbl

[10] Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically normal estimation of a parameter in a linear-fractional regression problem”, Siberian Math. J., 41:1 (2000), 125–137 | DOI | MR | Zbl

[11] Yu. Yu. Linke, A. I. Sakhanenko, “Ob usloviyakh asimptoticheskoi normalnosti odnoshagovykh $M$-otsenok”, Sib. zhurn. chist. i prikl. matem., 16:4 (2016), 46–64

[12] Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically optimal estimation in the linear regression problem in the case of violation of some classical assumptions”, Siberian Math. J., 50:2 (2009), 302–315 | DOI | MR | Zbl

[13] Z. D. Bai, Y. Wu, “General $M$-estimation”, J. Multivariate Anal., 63:1 (1997), 119–135 | DOI | MR | Zbl

[14] R. M. Balan, I. Schiopu-Kratina, “Asymptotic results with generalized estimating equations for longitudinal data”, Ann. Statist., 33:2 (2005), 522–541 | DOI | MR | Zbl

[15] A. Bergesio, V. J. Yohai, “Projection estimators for generalized linear models”, J. Amer. Statist. Assoc., 106:494 (2011), 661–671 | DOI | MR | Zbl

[16] P. J. Bickel, “One-step Huber estimates in the linear model”, J. Amer. Statist. Assoc., 70:350 (1975), 428–434 | DOI | MR | Zbl

[17] Zongwu Cai, Jianqing Fan, Runze Li, “Efficient estimation and inferences for varying-coefficient models”, J. Amer. Statist. Assoc., 95:451 (2000), 888–902 | DOI | MR | Zbl

[18] Jianwen Cai, Jianqing Fan, Haibo Zhou, Yong Zhou, “Hazard models with varying coefficients for multivariate failure time data”, Ann. Statist., 35:1 (2007), 324–354 | DOI | MR | Zbl

[19] Yuanyuan Lin, Kani Chen, “Efficient estimation of the censored linear regression model”, Biometrika, 100:2 (2013), 525–530 | DOI | MR | Zbl

[20] Jianqing Fan, Jianwei Chen, “One-step local quasi-likelihood estimation”, J. R. Stat. Soc. Ser. B Stat. Methodol., 61:4 (1999), 927–943 | DOI | MR | Zbl

[21] Jianqing Fan, Jiancheng Jiang, “Variable bandwidth and one-step local $M$-estimator”, Sci. China Ser. A, 43:1 (2000), 65–81 | DOI | MR | Zbl

[22] Jianqing Fan, Huazhen Lin, Yong Zhou, “Local partial-likelihood estimation for lifetime data”, Ann. Statist., 34:1 (2006), 290–325 | DOI | MR | Zbl

[23] C. A. Field, D. P. Wiens, “One-step $M$-estimators in the linear model, with dependent errors”, Canad. J. Statist., 22:2 (1994), 219–231 | DOI | MR | Zbl

[24] C. C. Heyde, Quasi-likelihood and its application. A general approach to optimal parameter estimation, Springer Ser. Statist., Springer-Verlag, New York, 1997, x+235 pp. | DOI | MR | Zbl

[25] P. Janssen, J. Jurečková, N. Veraverbeke, “Rate of convergence of one- and two-step $M$-estimators with applications to maximum likelihood and Pitman estimators”, Ann. Statist., 13:3 (1985), 1222–1229 | DOI | MR | Zbl

[26] J. Jurečková, S. Portnoy, “Asymptotics for one-step $M$-estimators in regression with application to combining efficiency and high breakdown point”, Comm. Statist. Theory Methods, 16:8 (1987), 2187–2199 | DOI | MR | Zbl

[27] J. Jurečková, P. K. Sen, “Effect of the initial estimator on the asymptotic behavior of one-step $M$-estimator”, Ann. Inst. Statist. Math., 42:2 (1990), 345–357 | DOI | MR | Zbl

[28] J. Jurečková, P. K. Sen, J. Picek, Methodology in robust and nonparametric statistics, CRC Press, Boca Raton, FL, 2013, xvi+394 pp. | DOI | MR | Zbl

[29] J. Jurečková, “Tail-behavior of estimators and of their one-step versions”, J. SFdS, 153:1 (2012), 44–51 | MR | Zbl

[30] L. Le Cam, “On the asymptotic theory of estimation and testing hypotheses”, Proceedings of the Third symposium on mathematical statistics and probability (Berkeley, 1954–1955), v. 1, Univ. of California Press, Berkeley–Los Angeles, 1956, 129–156 | MR | Zbl

[31] Yu. Yu. Linke, I. S. Borisov, “Constructing initial estimators in one-step estimation procedures of nonlinear regression”, Statist. Probab. Lett., 120:1 (2017), 87–94 | DOI | MR | Zbl

[32] Yu. Yu. Linke, “Asymptotic normality of one-step $M$-estimators based on non-identically distributed observations”, Statist. Probab. Lett., 129 (2017), 216–221 | DOI

[33] H.-G. Müller, Nonparametric regression analysis of longitudinal data, Lect. Notes Stat., 46, Springer-Verlag, Berlin, 1988, vi+199 pp. | DOI | MR | Zbl

[34] Ch. H. Müller, “Asymptotic behaviour of one-step-$M$-estimators in contaminated non-linear models”, Asymptotic statistics (Prague, 1993), Contrib. Statist., Physica, Heidelberg, 1994, 395–404 | MR | Zbl

[35] B. M. Pötscher, I. R. Prucha, “A class of partially adaptive one-step $M$-estimators for the non-linear regression model with dependent observations”, J. Econometrics, 32:2 (1986), 219–251 | DOI | MR | Zbl

[36] J. A. Reeds, “Asymptotic numbers of roots of Cauchy location likelihood equations”, Ann. Statist., 13:2 (1985), 775–784 | DOI | MR | Zbl

[37] G. A. F. Seber, C. J. Wild, Nonlinear regression, Wiley Ser. Probab. Stat., John Wiley Sons, Inc., Hoboken, NJ, 2003, 768 pp. | MR | Zbl

[38] R. J. Serfling, Approximation theorems of mathematical statistics, Wiley Ser. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1980, xiv+371 pp. | MR | Zbl

[39] D. G. Simpson, D. Ruppert, R. J. Carroll, “On one-step GM estimates and stability of inferences in linear regression”, J. Amer. Statist. Assoc., 87:418 (1992), 439–450 | DOI | MR | Zbl

[40] C. G. Small, Zejiang Yang, “Multiple roots of estimating functions”, Canad. J. Statist., 27:3 (1999), 585–598 | DOI | MR | Zbl

[41] C. G. Small, Jinfang Wang, Numerical methods for nonlinear estimating equations, Oxford Statist. Sci. Ser., 29, The Clarendon Press, Oxford Univ. Press, New York, 2003, xii+309 pp. | DOI | MR | Zbl

[42] C. G. Small, Jinfang Wang, Zejiang Yang, “Eliminating multiple root problems in estimation”, Statist. Sci., 15:4 (2000), 313–341 | DOI | MR

[43] R. G. Strongin, Ya. D. Sergeyev, Global optimization with non-convex constraints. Sequential and parallel algorithms, Nonconvex Optim. Appl., 45, Kluwer Acad. Publ., Dordrecht, 2000, xxviii+699 pp. | DOI | MR | Zbl

[44] L. A. Stefanski, R. J. Carroll, D. Ruppert, “Optimally bounded score functions for generalized linear models with applications to logistic regression”, Biometrika, 73:2 (1986), 413–424 | MR | Zbl

[45] S. Verrill, “Rate of convergence of $k$-step Newton estimators to efficient likelihood estimators”, Statist. Probab. Lett., 77:12 (2007), 1371–1376 | DOI | MR | Zbl

[46] A. H. Welsh, E. Ronchetti, “A journey in single steps: robust one-step $M$-estimation in linear regression”, J. Statist. Plann. Inference, 103:1-2 (2002), 287–310 | DOI | MR | Zbl

[47] Hui Zou, Runze Li, “One-step sparse estimates in nonconcave penalized likelihood models”, Ann. Statist., 36:4 (2008), 1509–1533 | DOI | MR | Zbl