Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit theorems.~II
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 446-467
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper puts forward a new method of construction of a probabilistic representation of solutions to initial-boundary value problems for a number of evolution equations (in particular, for the Schrödinger equation) in a bounded subdomain of $\mathbb R^2$ with smooth boundary. Our method is based on the construction of a special extension of the initial function from the domain to the entire plane. For problems with Neumann boundary condition, this method produces a new approach to the construction of a Wiener process “reflected from the boundary,” which was first introduced by A. V. Skorokhod.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
initial-boundary value problems, Schrödinger equation, limit theorems, Skorokhod problem, Feynman integral, Feynman measure.
Mots-clés : evolution equations
                    
                  
                
                
                Mots-clés : evolution equations
@article{TVP_2017_62_3_a1,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit {theorems.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {446--467},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a1/}
}
                      
                      
                    TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit theorems.~II JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 446 EP - 467 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a1/ LA - ru ID - TVP_2017_62_3_a1 ER -
%0 Journal Article %A I. A. Ibragimov %A N. V. Smorodina %A M. M. Faddeev %T Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit theorems.~II %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 446-467 %V 62 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a1/ %G ru %F TVP_2017_62_3_a1
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit theorems.~II. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 446-467. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a1/
