@article{TVP_2017_62_3_a0,
author = {S. Zh. Aibatov and L. G. Afanasyeva},
title = {Subexponential asymptotics for steady state tail probabilities in a single-server queue with regenerative input flow},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {423--445},
year = {2017},
volume = {62},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a0/}
}
TY - JOUR AU - S. Zh. Aibatov AU - L. G. Afanasyeva TI - Subexponential asymptotics for steady state tail probabilities in a single-server queue with regenerative input flow JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 423 EP - 445 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a0/ LA - ru ID - TVP_2017_62_3_a0 ER -
%0 Journal Article %A S. Zh. Aibatov %A L. G. Afanasyeva %T Subexponential asymptotics for steady state tail probabilities in a single-server queue with regenerative input flow %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 423-445 %V 62 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a0/ %G ru %F TVP_2017_62_3_a0
S. Zh. Aibatov; L. G. Afanasyeva. Subexponential asymptotics for steady state tail probabilities in a single-server queue with regenerative input flow. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 3, pp. 423-445. http://geodesic.mathdoc.fr/item/TVP_2017_62_3_a0/
[1] L. G. Afanas'eva, E. E. Bashtova, “Limit theorems for queueing systems with doubly stochastic Poisson arrivals (heavy traffic conditions)”, Problems Inform. Transmission, 44:4 (2008), 352–369 | DOI | MR | Zbl
[2] L. G. Afanasyeva, E. E. Bashtova, “Large deviation probabilities for queuing system with regenerating input flow”, Theory Probab. Appl., 60:1 (2016), 120–126 | DOI | DOI | MR | Zbl
[3] S. Zh. Aibatov, “Veroyatnosti bolshikh uklonenii dlya sistemy $M/G/1/\infty$ s nenadezhnym priborom”, Teoriya veroyatn. i ee primen., 61:2 (2016), 378–384 | DOI
[4] A. A. Borovkov, “Some limit theorems in the theory of queues. I”, Theory Probab. Appl., 9:4 (1964), 550–565 | DOI | MR | Zbl
[5] A. A. Borovkov, “On factorization identities and properties of the distribution of the supremum of sequential sums”, Theory Probab. Appl., 15:3 (1970), 359–402 | DOI | MR | Zbl
[6] A. A. Borovkov, Stochastic processes in queueing theory, Appl. Math., Springer-Verlag, New York–Berlin, 1976, xi+280 pp. | MR | MR | Zbl | Zbl
[7] A. A. Borovkov, Probability theory, Gordon and Breach Science Publishers, Amsterdam, 1998, x+474 pp. | MR | MR | Zbl | Zbl
[8] A. A. Borovkov, “On subexponential distributions and asymptotics of the distribution of the maximum of sequential sums”, Siberian Math. J., 43:6 (2002), 995–1022 | DOI | MR | Zbl
[9] L. Afanasyeva, E. Bashtova, E. Bulinskaya, “Limit theorems for semi-Markov queues and their applications”, Comm. Statist. Simulation Comput., 41:6 (2012), 688–709 | DOI | MR | Zbl
[10] L. G. Afanaseva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Syst., 76:2 (2014), 125–147 | DOI | MR | Zbl
[11] G. Alsmeyer, M. Sgibnev, “On the tail behaviour of the supremum of a random walk defined on a Markov chain”, Yokohama Math. J., 46:2 (1999), 139–159 | MR | Zbl
[12] K. Arndt, “Asymptotic properties of the distribution of the supremum of a random walk on a Markov chain”, Theory Probab. Appl., 25:2 (1980), 309–324 | DOI | MR | Zbl
[13] S. Asmussen, “Semi-Markov queues with heavy tails”, Semi-Markov models and applications (Compiègne, 1998), Kluwer Acad. Publ., Dordrecht, 1999, 269–284 | MR | Zbl
[14] S. Asmussen, Applied probability and queues, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., John Wiley Sons, Ltd., Chichester, 1987, x+318 pp. | MR | Zbl
[15] S. Asmussen, H. Schmidli, V. Schmidt, “Tail probabilities for non-standard risk and queueing processes with subexponential jumps”, Adv. in Appl. Probab., 31:2 (1999), 422–447 | DOI | MR | Zbl
[16] A. A. Borovkov, K. A. Borovkov, Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 118, xxx+625 pp. | DOI | MR | Zbl
[17] J. W. Cohen, The single server queue, North-Holland Delta Ser., 8, North-Holland Publishing Co., Amsterdam–London; John Wiley Sons, Inc., New York, 1969, xiv+657 pp. | MR | Zbl
[18] D. Denisov, S. Foss, D. Korshunov, “Asymptotics of randomly stopped sums in the presence of heavy tails”, Bernoulli, 16:4 (2010), 971–994 | DOI | MR | Zbl
[19] S. Foss, T. Konstantopoulos, S. Zachary, “Discrete and continuous time modulated random walks with heavy-tailed increments”, J. Theoret. Probab., 20:3 (2007), 581–612 | DOI | MR | Zbl
[20] S. Foss, D. Korshunov, S. Zachary, An introduction to heavy-tailed and subexponential distributions, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2011, x+123 pp. | DOI | MR | Zbl
[21] A. Ganesh, N. O'Connell, D. Wischik, Big queues, Lecture Notes in Math., 1838, Springer-Verlag, Berlin, 2004, xii+254 pp. | DOI | MR | Zbl
[22] D. P. Gaver, Jr., “A waiting line with interrupted service, including priorities”, J. Roy. Statist. Soc. Ser. B, 24 (1962), 73–90 | MR | Zbl
[23] P. W. Glynn, W. Whitt, “Logarithmic asymptotics for steady-state tail probabilities in a single-server queue”, J. Appl. Probab., 31A (1994), 131–156 | DOI | MR | Zbl
[24] J. Grandell, Doubly stochastic Poisson processes, Lecture Notes in Math., 529, Springer-Verlag, Berlin–New York, 1976, x+234 pp. | DOI | MR | Zbl
[25] P. R. Jelenković, A. A. Lazar, “Subexponential asymptotics of a Markov-modulated random walk with queueing applications”, J. Appl. Probab., 35:2 (1998), 325-347 | DOI | MR | Zbl
[26] C. Klüppelberg, “Subexponential distributions and integrated tails”, J. Appl. Prob., 25:1 (1988), 132–141 | DOI | MR | Zbl
[27] W. E. Leland, M. S. Taqqu, W. Willinger, D. Wilson, “On the self-similar nature of Ethernet traffic”, IEEE/ACM Trans. Netw., 2:1 (1994), 1–15 | DOI
[28] D. V. Lindley, “The theory of queues with a single server”, Proc. Cambridge Philos. Soc., 48:2 (1952), 277–289 | DOI | MR | Zbl
[29] R. M. Loynes, “The stability of a queue with non-independent inter-arrival and service times”, Proc. Cambridge Philos. Soc., 58:3 (1962), 497–520 | DOI | MR | Zbl
[30] W. L. Smith, “Regenerative stochastic processes”, Proc. Roy. Soc. London. Ser. A, 232:1188 (1955), 6–31 | DOI | MR | Zbl
[31] A. G. Pakes, “On the tails of waiting-time distributions”, J. Appl. Probab., 12:3 (1975), 555–564 | DOI | MR | Zbl
[32] E. J. G. Pitman, “Subexponential distribution functions”, J. Austral. Math. Soc. Ser. A, 29:3 (1980), 337–347 | DOI | MR | Zbl
[33] S. I. Resnick, “Heavy tail modeling and teletraffic data”, Ann. Statist., 25:5 (1997), 1805–1869 | DOI | MR | Zbl
[34] H. Thorisson, Coupling, stationarity, and regeneration, Probab. Appl. (N. Y.), Springer-Verlag, New York, 2000, xiv+517 pp. | MR | Zbl
[35] N. Veraverbeke, “Asymptotic behaviour of Wiener–Hopf factors of a random walk”, Stochastic Processes Appl., 5:1 (1977), 27–37 | DOI | MR | Zbl
[36] W. Willinger, M. S. Taqqu, W. E. Leland, D. V. Wilson, “Self-similarity in high-speed packet traffic: analysis and modeling of Ethernet traffic measurements”, Statist. Sci., 10:1 (1995), 67–85 | DOI | Zbl