Characterizations of probability distributions through $Q$-independence
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 415-420 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive some characterizations of probability distributions for linear forms of $Q$-independent random variables.
Keywords: $Q$-independence, linear forms, characterization of probability distributions.
@article{TVP_2017_62_2_a9,
     author = {B. L. S. Prakasa Rao},
     title = {Characterizations of probability distributions through $Q$-independence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {415--420},
     year = {2017},
     volume = {62},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a9/}
}
TY  - JOUR
AU  - B. L. S. Prakasa Rao
TI  - Characterizations of probability distributions through $Q$-independence
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 415
EP  - 420
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a9/
LA  - en
ID  - TVP_2017_62_2_a9
ER  - 
%0 Journal Article
%A B. L. S. Prakasa Rao
%T Characterizations of probability distributions through $Q$-independence
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 415-420
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a9/
%G en
%F TVP_2017_62_2_a9
B. L. S. Prakasa Rao. Characterizations of probability distributions through $Q$-independence. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 415-420. http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a9/

[1] H. Cramér, “Über eine Eigenschaft der normalen Verteilungsfunktion”, Math. Z., 41:1 (1936), 405–414 | DOI | MR | Zbl

[2] G. Darmois, “Analyse générale des liaisons stochastiques. Etude particulière de l'analyse factorielle linéaire”, Rev. Inst. Internat. Statistique, 21 (1953), 2–8 | DOI | MR | Zbl

[3] A. M. Kagan, Yu. V. Linnik, C. R. Rao, Characterization problems in mathematical statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley Sons, New York–London–Sydney, 1973, xii+499 pp. | MR | MR | Zbl | Zbl

[4] A. M. Kagan, G. J. Székely, “An analytic generalization of independence and identical distributiveness”, Statist. Probab. Lett., 110 (2016), 244–248 | DOI | MR | Zbl

[5] I. Kotlarski, “On some characterizations of probability distributions in Hilbert spaces”, Ann. Mat. Pura Appl. (4), 74 (1966), 129–134 | DOI | MR | Zbl

[6] I. Kotlarski, “On characterizing the gamma and the normal distribution”, Pacific J. Math., 20 (1967), 69–76 | DOI | MR | Zbl

[7] J. Marcinkeiwicz, “Sur une propriété de la loi de Gauß”, Math. Z., 44:1 (1939), 612–618 | DOI | MR | Zbl

[8] P. G. Miller, “Characterizing the distribution of three independent $n$-dimensional random variables $X_1$, $X_2$, $X_3$ having analytic characteristic functions by the joint distribution of $(X_1+X_3,X_2+X_3)$”, Pacific J. Math., 35:2 (1970), 487–491 | DOI | MR | Zbl

[9] B. L. S. Prakasa Rao, “On a characterization of probability distributions on locally compact abelian groups”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9:2 (1968), 98–100 | DOI | MR | Zbl

[10] B. L. S. Prakasa Rao, Identifiability in stochastic models. Characterization of probability distributions, Probab. Math. Statist., Academic Press, Inc., Boston, MA, 1992, xiv+253 pp. | MR | Zbl

[11] C. R. Rao, “Characterisation of the distribution of random variables in linear structural relations”, Sankhyā Ser. A, 28 (1966), 251–260 | MR | Zbl

[12] C. R. Rao, “On some characterisations of the normal law”, Sankhyā Ser. A, 29 (1967), 1–14 | MR | Zbl

[13] C. R. Rao, “Characterization of probability laws by linear functions”, Sankhyā Ser. A, 33 (1971), 265–270 | MR | Zbl

[14] Z. Sasvári, “Characterizing the distribution of the random variables $X_1$, $X_2$, $X_3$ by the distribution of $(X_1-X_3, X_2-X_3)$”, Probab. Theory Relat. Fields, 73:1 (1986), 43–49 | DOI | MR | Zbl

[15] V. P. Skitovich, “Ob odnom svoistve normalnogo raspredeleniya”, Dokl. AN SSSR, 89:2 (1953), 217–219 | MR | Zbl

[16] V. P. Skitovich, “Lineinye formy ot nezavisimykh sluchainykh velichin i normalnyi zakon raspredeleniya”, Izv. AN SSSR. Ser. matem., 18:2 (1954), 185–200 | MR | Zbl

[17] A. M. Vershik, “Some characteristic properties of Gaussian stochastic processes”, Theory Probab. Appl., 9:2 (1964), 353–356 | DOI | MR | Zbl