A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 345-364

Voir la notice de l'article provenant de la source Math-Net.Ru

A moment inequality between the central and noncentral third-order absolute moments is proved, which is optimal for every value of the recentering parameter. By use of this inequality there are constructed convergence rate estimates in the central limit theorem for Poisson-binomial random sums in the uniform and mean metrics.
Mots-clés : compound Poisson-binomial distribution
Keywords: central limit theorem (CLT), convergence rate estimate, normal approximation, Berry– Esséen inequality, moment inequality.
@article{TVP_2017_62_2_a5,
     author = {I. G. Shevtsova},
     title = {A moment inequality with application to convergence rate estimates in the global {CLT} for {Poisson-binomial} random sums},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {345--364},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/}
}
TY  - JOUR
AU  - I. G. Shevtsova
TI  - A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 345
EP  - 364
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/
LA  - ru
ID  - TVP_2017_62_2_a5
ER  - 
%0 Journal Article
%A I. G. Shevtsova
%T A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 345-364
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/
%G ru
%F TVP_2017_62_2_a5
I. G. Shevtsova. A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 345-364. http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/