A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 345-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A moment inequality between the central and noncentral third-order absolute moments is proved, which is optimal for every value of the recentering parameter. By use of this inequality there are constructed convergence rate estimates in the central limit theorem for Poisson-binomial random sums in the uniform and mean metrics.
Mots-clés : compound Poisson-binomial distribution
Keywords: central limit theorem (CLT), convergence rate estimate, normal approximation, Berry– Esséen inequality, moment inequality.
@article{TVP_2017_62_2_a5,
     author = {I. G. Shevtsova},
     title = {A moment inequality with application to convergence rate estimates in the global {CLT} for {Poisson-binomial} random sums},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {345--364},
     year = {2017},
     volume = {62},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/}
}
TY  - JOUR
AU  - I. G. Shevtsova
TI  - A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 345
EP  - 364
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/
LA  - ru
ID  - TVP_2017_62_2_a5
ER  - 
%0 Journal Article
%A I. G. Shevtsova
%T A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 345-364
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/
%G ru
%F TVP_2017_62_2_a5
I. G. Shevtsova. A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 345-364. http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/

[1] R. P. Agnew, “Global versions of the central limit theorem”, Proc. Nat. Acad. Sci. U. S. A., 40 (1954), 800–804 | DOI | MR | Zbl

[2] R. P. Agnew, “Estimates for global central limit theorems”, Ann. Math. Statist., 28 (1957), 26–42 | DOI | MR | Zbl

[3] Yu. S. Nefedova, I. G. Shevtsova, “On nonuniform convergence rate estimates in the central limit theorem”, Theory Probab. Appl., 57:1 (2013), 28–59 | DOI | DOI | MR | Zbl

[4] I. Pinelis, “Optimal re-centering bounds, with applications to Rosenthal-type concentration of measure inequalities”, High dimensional probability VI, Progr. Probab., 66, Birkhäuser/Springer, Basel, 2013, 81–93 ; arXiv: 1111.2622 | MR | Zbl

[5] I. Shevtsova, “Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation”, Ann. Math. Inform., 39 (2012), 241–307 | MR | Zbl

[6] I. G. Shevtsova, “On the accuracy of the normal approximation for sums of independent random variables”, Dokl. Math., 85:2 (2012), 274–278 | DOI | MR | Zbl

[7] I. G. Shevtsova, “Ob absolyutnykh konstantakh v neravenstve Berri–Esseena i ego strukturnykh i neravnomernykh utochneniyakh”, Inform. i ee primen., 7:1 (2013), 124–125

[8] I. G. Shevtsova, “On the absolute constants in the Berry–Esseen-type inequalities”, Dokl. Math., 89:3 (2014), 378–381 | DOI | MR | Zbl

[9] J. K. Sunklodas, “On the normal approximation of a binomial random sum”, Lith. Math. J., 54:3 (2015), 356–365 | DOI | MR | Zbl

[10] I. Tyurin, New estimates of the convergence rate in the Lyapunov theorem, arXiv: 0912.0726

[11] I. S. Tyurin, “On the accuracy of the Gaussian approximation”, Dokl. Math., 80:3 (2009), 840–843 | DOI | MR | Zbl

[12] I. S. Tyurin, “On the convergence rate in Lyapunov's theorem”, Theory Probab. Appl., 55:2 (2011), 253–270 | DOI | DOI | MR | Zbl

[13] V. M. Zolotarev, Modern theory of summation of random variables, Mod. Probab. Stat., VSP, Utrecht, 1997, x+412 pp. | DOI | MR | MR | Zbl | Zbl