A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 345-364
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A moment inequality between the central and noncentral third-order absolute moments is proved, which is optimal for every value of the recentering parameter. By use of this inequality there are constructed convergence rate estimates in the central limit theorem for Poisson-binomial random sums in the uniform and mean metrics.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
compound Poisson-binomial distribution
Keywords: central limit theorem (CLT), convergence rate estimate, normal approximation, Berry– Esséen inequality, moment inequality.
                    
                  
                
                
                Keywords: central limit theorem (CLT), convergence rate estimate, normal approximation, Berry– Esséen inequality, moment inequality.
@article{TVP_2017_62_2_a5,
     author = {I. G. Shevtsova},
     title = {A moment inequality with application to convergence rate estimates in the global {CLT} for {Poisson-binomial} random sums},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {345--364},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/}
}
                      
                      
                    TY - JOUR AU - I. G. Shevtsova TI - A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 345 EP - 364 VL - 62 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/ LA - ru ID - TVP_2017_62_2_a5 ER -
%0 Journal Article %A I. G. Shevtsova %T A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 345-364 %V 62 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/ %G ru %F TVP_2017_62_2_a5
I. G. Shevtsova. A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 345-364. http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/
