Keywords: central limit theorem (CLT), convergence rate estimate, normal approximation, Berry– Esséen inequality, moment inequality.
@article{TVP_2017_62_2_a5,
author = {I. G. Shevtsova},
title = {A moment inequality with application to convergence rate estimates in the global {CLT} for {Poisson-binomial} random sums},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {345--364},
year = {2017},
volume = {62},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/}
}
TY - JOUR AU - I. G. Shevtsova TI - A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 345 EP - 364 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/ LA - ru ID - TVP_2017_62_2_a5 ER -
%0 Journal Article %A I. G. Shevtsova %T A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 345-364 %V 62 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/ %G ru %F TVP_2017_62_2_a5
I. G. Shevtsova. A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 345-364. http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a5/
[1] R. P. Agnew, “Global versions of the central limit theorem”, Proc. Nat. Acad. Sci. U. S. A., 40 (1954), 800–804 | DOI | MR | Zbl
[2] R. P. Agnew, “Estimates for global central limit theorems”, Ann. Math. Statist., 28 (1957), 26–42 | DOI | MR | Zbl
[3] Yu. S. Nefedova, I. G. Shevtsova, “On nonuniform convergence rate estimates in the central limit theorem”, Theory Probab. Appl., 57:1 (2013), 28–59 | DOI | DOI | MR | Zbl
[4] I. Pinelis, “Optimal re-centering bounds, with applications to Rosenthal-type concentration of measure inequalities”, High dimensional probability VI, Progr. Probab., 66, Birkhäuser/Springer, Basel, 2013, 81–93 ; arXiv: 1111.2622 | MR | Zbl
[5] I. Shevtsova, “Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation”, Ann. Math. Inform., 39 (2012), 241–307 | MR | Zbl
[6] I. G. Shevtsova, “On the accuracy of the normal approximation for sums of independent random variables”, Dokl. Math., 85:2 (2012), 274–278 | DOI | MR | Zbl
[7] I. G. Shevtsova, “Ob absolyutnykh konstantakh v neravenstve Berri–Esseena i ego strukturnykh i neravnomernykh utochneniyakh”, Inform. i ee primen., 7:1 (2013), 124–125
[8] I. G. Shevtsova, “On the absolute constants in the Berry–Esseen-type inequalities”, Dokl. Math., 89:3 (2014), 378–381 | DOI | MR | Zbl
[9] J. K. Sunklodas, “On the normal approximation of a binomial random sum”, Lith. Math. J., 54:3 (2015), 356–365 | DOI | MR | Zbl
[10] I. Tyurin, New estimates of the convergence rate in the Lyapunov theorem, arXiv: 0912.0726
[11] I. S. Tyurin, “On the accuracy of the Gaussian approximation”, Dokl. Math., 80:3 (2009), 840–843 | DOI | MR | Zbl
[12] I. S. Tyurin, “On the convergence rate in Lyapunov's theorem”, Theory Probab. Appl., 55:2 (2011), 253–270 | DOI | DOI | MR | Zbl
[13] V. M. Zolotarev, Modern theory of summation of random variables, Mod. Probab. Stat., VSP, Utrecht, 1997, x+412 pp. | DOI | MR | MR | Zbl | Zbl