@article{TVP_2017_62_2_a2,
author = {A. A. Gushchin},
title = {The joint law of terminal values of a nonnegative submartingale and its compensator},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {267--291},
year = {2017},
volume = {62},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a2/}
}
A. A. Gushchin. The joint law of terminal values of a nonnegative submartingale and its compensator. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 267-291. http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a2/
[1] P. S. Alexandroff, Einführung in die Mengenlehre und in die allgemeine Topologie, Hochschulbücher für Mathematik, 85, VEB Deutscher Verlag der Wissenschaften, Berlin, 1984, 336 pp. | MR | MR
[2] J. Azéma, M. Yor, “Une solution simple au problème de Skorokhod”, Séminaire des Probabilités (Univ. Strasbourg, Strasbourg, 1977/1978), v. XIII, Lecture Notes in Math., 721, Springer, Berlin, 1979, 90–115 | DOI | MR | Zbl
[3] J. Azéma, M. Yor, “Le problème de Skorokhod: compléments à “Une solution simple au problème de Skorokhod””, Séminaire des Probabilités (Univ. Strasbourg, Strasbourg, 1977/78), v. XIII, Lecture Notes in Math., 721, Springer, Berlin, 1979, 625–633 | DOI | MR | Zbl
[4] M. T. Barlow, “Construction of a martingale with given absolute value”, Ann. Probab., 9:2 (1981), 314–320 | DOI | MR | Zbl
[5] O. E. Barndorff-Nielsen, A. Shiryaev, Change of time and change of measure, Adv. Ser. Statist. Sci. Appl. Probab., 21, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015, xviii+326 pp. | DOI | MR | Zbl
[6] D. Blackwell, L. E. Dubins, “A converse to the dominated convergence theorem”, Illinois J. Math., 7 (1963), 508–514 | MR | Zbl
[7] D. L. Burkholder, B. J. Davis, R. F. Gundy, “Integral inequalities for convex functions of operators on martingales”, Proceedings of the 6th Berkeley symposium on mathematical statistics and probability (Univ. California, Berkeley, CA, 1970/1971), v. 2, Probability theory, Univ. of California Press, Berkeley, CA, 1972, 223–240 | MR | Zbl
[8] P. Cheridito, A. Nikeghbali, E. Platen, “Processes of class Sigma, last passage times, and drawdowns”, SIAM J. Financial Math., 3:1 (2012), 280–303 | DOI | MR | Zbl
[9] S. N. Cohen, R. J. Elliott, Stochastic calculus and applications, Probab. Appl., 2nd ed., Springer, Cham, 2015, xxiii+666 pp. | DOI | MR | Zbl
[10] A. M. G. Cox, J. Obłój, “On joint distributions of the maximum, minimum and terminal value of a continuous uniformly integrable martingale”, Stochastic Process. Appl., 125:8 (2015), 3280–3300 | DOI | MR | Zbl
[11] C. Dellacherie, P.-A. Meyer, Probabilities and potential. B. Theory of martingales, North-Holland Math. Stud., 72, North-Holland Publishing Co., Amsterdam, 1982, xvii+463 pp. | MR | Zbl
[12] C. Doléans, “Construction du processus croissant naturel associé à un potentiel de la classe $(D)$”, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), 600–602 | MR | Zbl
[13] L. E. Dubins, D. Gilat, “On the distribution of maxima of martingales”, Proc. Amer. Math. Soc., 68:3 (1978), 337–338 | DOI | MR | Zbl
[14] H. Föllmer, A. Schied, Stochastic finance. An introduction in discrete time, De Gruyter Stud. Math., 27, 2nd rev. and ext. ed., Walter de Gruyter Co., Berlin–New York, 2004, xii+459 pp. | DOI | MR | Zbl
[15] A. M. Garsia, Martingale inequalities. Seminar notes on recent progress, W. A. Benjamin, Inc., Reading, MA–London–Amsterdam, 1973, viii+184 pp. | MR | Zbl
[16] A. A. Gushchin, Stochastic calculus for quantitative finance, ISTE Press, London; Elsevier Ltd., Oxford, 2015, xxi+185 pp. | MR | Zbl
[17] J. Jacod, Calcul stochastique et problèmes de martingales, Lecture Notes in Math., 714, Springer, Berlin, 1979, x+539 pp. | DOI | MR | Zbl
[18] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, Springer-Verlag, Berlin, 1987, xviii+601 pp. | DOI | MR | MR | MR | Zbl | Zbl
[19] Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev, “On the question of absolute continuity and singularity of probability measures”, Math. USSR-Sb., 33:2 (1977), 203–221 | DOI | MR | Zbl
[20] R. P. Kertz, U. Rösler, “Martingales with given maxima and terminal distributions”, Israel J. Math., 69:2 (1990), 173–192 | DOI | MR | Zbl
[21] É. Lenglart, D. Lépingle, M. Pratelli, “Présentation unifiée de certaines inégalités de la théorie des martingales”, Séminaire des probabilités (Paris, 1978/1979), v. XIV, Lecture Notes in Math., 784, Springer, Berlin, 1980, 26–48 | DOI | MR | Zbl
[22] R. Sh. Liptser, A. N. Shiryayev, Theory of martingales, Math. Appl. (Soviet Ser.), 49, Kluwer Academic Publishers Group, Dordrecht, 1989, xiv+792 pp. | DOI | MR | Zbl | Zbl
[23] J. Neveu, Discrete-parameter martingales, North-Holland Math. Library, 10, North-Holland Publishing Co., Amsterdam–Oxford; American Elsevier Publishing Co., Inc., New York, 1975, viii+236 pp. | MR | Zbl
[24] A. Nikeghbali, “A class of remarkable submartingales”, Stochastic Process. Appl., 116:6 (2006), 917–938 | DOI | MR | Zbl
[25] A. Osȩkowski, Sharp martingale and semimartingale inequalities, IMPAN Monogr. Mat. (N. S.), 72, Birkhäuser/Springer Basel AG, Basel, 2012, xii+462 pp. | DOI | MR | Zbl
[26] L. C. G. Rogers, “The joint law of the maximum and terminal value of a martingale”, Probab. Theory Related Fields, 95:4 (1993), 451–466 | DOI | MR | Zbl
[27] P. Vallois, “Sur la loi du maximum et du temps local d'une martingale continue uniformément intégrable”, Proc. London Math. Soc. (3), 69:2 (1994), 399–427 | DOI | MR | Zbl
[28] G. Wang, “Sharp inequalities for the conditional square function of a martingale”, Ann. Probab., 19:4 (1991), 1679–1688 | DOI | MR | Zbl