@article{TVP_2017_62_2_a1,
author = {F. G\"otze and Yu. S. Eliseeva and A. Yu. Zaitsev},
title = {Arak inequalities for concentration functions and the {Littlewood{\textendash}Offord} problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {241--266},
year = {2017},
volume = {62},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a1/}
}
TY - JOUR AU - F. Götze AU - Yu. S. Eliseeva AU - A. Yu. Zaitsev TI - Arak inequalities for concentration functions and the Littlewood–Offord problem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 241 EP - 266 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a1/ LA - ru ID - TVP_2017_62_2_a1 ER -
F. Götze; Yu. S. Eliseeva; A. Yu. Zaitsev. Arak inequalities for concentration functions and the Littlewood–Offord problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 241-266. http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a1/
[1] T. V. Arak, “On the approximation of $n$-fold convolutions of distributions having non-negative characteristic functions with accompanying laws”, Theory Probab. Appl., 25:2 (1981), 221–243 | DOI | MR | Zbl
[2] T. V. Arak, “On the convergence rate in Kolmogorov's uniform limit theorem. I”, Theory Probab. Appl., 26:2 (1982), 219–239 | DOI | MR | Zbl
[3] T. V. Arak, A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables”, Proc. Steklov Inst. Math., 174 (1988), 1–222 | MR | Zbl
[4] S. G. Bobkov, G. P. Chistyakov, “Bounds on the maximum of the density for sums of independent random variables”, J. Math. Sci. (N. Y.), 199:2 (2014), 100–106 | DOI | MR | Zbl
[5] V. Čekanavičius, “Approximation with accompanying distributions and asymptotic expansions. I”, Lithuanian Math. J., 29:1 (1989), 75–80 | DOI | MR | Zbl
[6] V. Čekanavičius, “Bergström-type asymptotic expansions in the first uniform Kolmogorov's theorem”, Probability theory and mathematical statistics (Vilnius, 1993), TEV, Vilnius, 1994, 223–238 | MR | Zbl
[7] V. Čekanavičius, Approximations methods in probability theory, Universitext, Springer, Cham, 2016, xii+274 pp. | DOI | MR | Zbl
[8] J.-M. Deshouillers, G. A. Freiman, A. A. Yudin, “On bounds for the concentration function. II”, J. Theoret. Probab., 14:3 (2001), 813–820 | DOI | MR | Zbl
[9] Yu. S. Eliseeva, “Multivariate estimates for the concentration functions of weighted sums of independent, identically distributed random variables”, J. Math. Sci. (N. Y.), 204:1 (2015), 78–89 | DOI | MR | Zbl
[10] Yu. S. Eliseeva, A. Yu. Zaitsev, “Estimates of the concentration functions of weighted sums of independent random variables”, Theory Probab. Appl., 57:4 (2013), 670–678 | DOI | DOI | MR | Zbl
[11] Yu. S. Eliseeva, A. Yu. Zaitsev, “On the Littlewood–Offord problem”, J. Math. Sci. (N. Y.), 214:4 (2016), 467–473 | DOI | MR | Zbl
[12] Yu. S. Eliseeva, F. Götze, A. Yu. Zaitsev, “Estimates for the concentration functions in the Littlewood–Offord problem”, J. Math. Sci. (N. Y.), 206:2 (2015), 146–158 | DOI | Zbl
[13] P. Erdös, “On a lemma of Littlewood and Offord”, Bull. Amer. Math. Soc., 51:12 (1945), 898–902 | DOI | MR | Zbl
[14] C. G. Esseen, “On the Kolmogorov–Rogozin inequality for the concentration function”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 5:3 (1966), 210–216 | DOI | MR | Zbl
[15] C. G. Esseen, “On the concentration function of a sum of independent random variables”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9:4 (1968), 290–308 | DOI | MR | Zbl
[16] G. A. Freiman, “Foundations of a structural theory of set addition”, Transl. Math. Monogr., 37, Amer. Math. Soc., Providence, R.I., 1973, vii+108 pp. | MR | MR | Zbl | Zbl
[17] G. A. Freiman, A. A. Yudin, “On the measure of large values of the modulus of a trigonometric sum”, European J. Combin., 34:8 (2013), 1338–1347 | DOI | MR | Zbl
[18] O. Friedland, S. Sodin, “Bounds on the concentration function in terms of the Diophantine approximation”, C. R. Math. Acad. Sci. Paris, 345:9 (2007), 513–518 | DOI | MR | Zbl
[19] F. Götze, A. Yu. Zaitsev, “Estimates for the rapid decay of concentration functions of $n$-fold convolutions”, J. Theoret. Probab., 11:3 (1998), 715–731 | DOI | MR | Zbl
[20] F. Götze, A. Yu. Zaitsev, “A multiplicative inequality for concentration functions of $n$-fold convolutions”, High dimensional probability (Seattle, WA, 1999), v. II, Progr. Probab., 47, Birkhäuser Boston, Boston, MA, 2000, 39–47 | MR | Zbl
[21] G. Halász, “Estimates for the concentration function of combinatorial number theory and probability”, Period. Math. Hungar., 8:3 (1977), 197–211 | DOI | MR | Zbl
[22] W. Hengartner, R. Theodorescu, Concentration functions, Probab. Math. Statist., 20, Academic Press, New York–London, 1973, xii+139 pp. | MR | Zbl | Zbl
[23] A. N. Kolmogorov, “Two uniform limit theorems for sums of independent random variables”, Theory Probab. Appl., 1:4 (1956), 384–394 | DOI | MR | Zbl
[24] J. E. Littlewood, A. C. Offord, “On the number of real roots of a random algebraic equation. III”, Matem. sb., 12(54):3 (1943), 277–286 | MR | Zbl
[25] D. A. Moskvin, G. A. Freiman, A. A. Yudin, “Structure theory of set addition and local limit theorems for independent lattice random variables”, Theory Probab. Appl., 19:1 (1974), 53–64 | DOI | MR | Zbl
[26] A. B. Mukhin, “O kontsentratsii raspredelenii summ nezavisimykh sluchainykh velichin. I”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 1973, no. 2, 25–29 ; II, 1973, No 6, 18–23 ; III, 1976, No 1, 15–19 | Zbl | Zbl
[27] Hoi Nguyen, Van Vu, “Optimal inverse Littlewood–Offord theorems”, Adv. Math., 226:6 (2011), 5298–5319 | DOI | MR | Zbl
[28] Hoi H. Nguyen, Van H. Vu, “Small ball probabilities, inverse theorems, and applications”, Erdős centennial, Bolyai Soc. Math. Stud., 25, János Bolyai Math. Soc., Budapest, 2013, 409–463 | DOI | MR | Zbl
[29] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | MR | Zbl | Zbl
[30] B. A. Rogozin, “On the increase of dispersion of sums of independent random variables”, Theory Probab. Appl., 6:1 (1961), 97–99 | DOI | MR | Zbl
[31] M. Rudelson, R. Vershynin, “The Littlewood–Offord problem and invertibility of random matrices”, Adv. Math., 218:2 (2008), 600–633 | DOI | MR | Zbl
[32] M. Rudelson, R. Vershynin, “Smallest singular value of a random rectangular matrix”, Comm. Pure Appl. Math., 62:12 (2009), 1707–1739 | DOI | MR | Zbl
[33] M. Rudelson, R. Vershynin, “Small ball probabilities for linear images of high-dimensional distributions”, Int. Math. Res. Not. IMRN, 2015:19 (2015), 9594–9617 ; arXiv: 1402.4492 | DOI | MR | Zbl
[34] T. Tao, Van. Vu, “John-type theorems for generalized arithmetic progressions and iterated sumsets”, Adv. Math., 219:2 (2008), 428–449 | DOI | MR | Zbl
[35] T. Tao, Van H. Vu, “Inverse Littlewood–Offord theorems and the condition number of random discrete matrices”, Ann. of Math. (2), 169:2 (2009), 595–632 | DOI | MR | Zbl
[36] T. Tao, Van Vu, “From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices”, Bull. Amer. Math. Soc. (N.S.), 46:3 (2009), 377–396 | DOI | MR | Zbl
[37] T. Tao, Van Vu, “A sharp inverse Littlewood–Offord theorem”, Random Structures Algorithms, 37:4 (2010), 525–539 | DOI | MR | Zbl
[38] R. Vershynin, “Invertibility of symmetric random matrices”, Random Structures Algorithms, 44:2 (2014), 135–182 | DOI | MR | Zbl
[39] A. Yu. Zaitsev, “On the accuracy of approximation of distributions of sums of independent random variables — which are nonzero with a small probability — by means of accompanying laws”, Theory Probab. Appl., 28:4 (1984), 657–669 | DOI | MR | Zbl
[40] A. Yu. Zaitsev, “Multidimensional generalized method of triangular functions”, J. Soviet Math., 43:6 (1988), 2797–2810 | DOI | MR | Zbl
[41] A. Yu. Zaitsev, “On the uniform approximation of distributions of sums of independent random variables”, Theory Probab. Appl., 32:1 (1987), 40–47 | DOI | MR | Zbl
[42] A. Yu. Zaitsev, “Estimates for the closeness of successive convolutions of multidimensional symmetric distributions”, Probab. Theory Related Fields, 79:2 (1988), 175–200 | DOI | MR | Zbl
[43] A. Yu. Zaitsev, “Multidimensional version of the second uniform limit theorem of Kolmogorov”, Theory Probab. Appl., 34:1 (1989), 108–128 | DOI | MR | Zbl
[44] A. Yu. Zaitsev, “Approximation of convolutions of multi-dimensional symmetric distributions by accompanying laws”, J. Soviet Math., 61:1 (1992), 1859–1872 | DOI | MR | Zbl
[45] A. Yu. Zaitsev, “Certain class of nonuniform estimates in multidimensional limit theorems”, J. Math. Sci., 68:4 (1994), 459–468 | DOI | MR | Zbl
[46] A. Yu. Zaitsev, “Approximation of convolutions of probability distributions by infinitely divisible laws under weakened moment restrictions”, J. Math. Sci., 75:5 (1995), 1922–1930 | DOI | MR | Zbl
[47] A. Yu. Zaitsev, “Approximation of a sample by a Poisson point process”, J. Math. Sci. (N. Y.), 128:1 (2005), 2556–2563 | DOI | MR | Zbl
[48] A. Yu. Zaitsev, “A bound for the maximal probability in the Littlewood–Offord problem”, J. Math. Sci. (N. Y.), 219:5 (2016), 743–746 | DOI | MR
[49] A. Yu. Zaitsev, T. V. Arak, “On the rate of convergence in Kolmogorov's second uniform limit theorem”, Theory Probab. Appl., 28:2 (1984), 351–374 | DOI | MR | Zbl