Integro-local limit theorems for compound renewal processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 217-240

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain integro-local theorems (analogues of Stone's theorem) for compound renewal processes when at least one of the following two conditions is met: (a) the components of the jumps in the process are independent or are linearly dependent, or (b) the jumps have finite moments of an order higher than 2. In case (b) we obtain an upper bound for the remainder term.
Keywords: compound renewal process, integro-local theorem, analogues of Stone's theorem.
@article{TVP_2017_62_2_a0,
     author = {A. A. Borovkov},
     title = {Integro-local limit theorems for compound renewal processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {217--240},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a0/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Integro-local limit theorems for compound renewal processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 217
EP  - 240
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a0/
LA  - ru
ID  - TVP_2017_62_2_a0
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Integro-local limit theorems for compound renewal processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 217-240
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a0/
%G ru
%F TVP_2017_62_2_a0
A. A. Borovkov. Integro-local limit theorems for compound renewal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 2, pp. 217-240. http://geodesic.mathdoc.fr/item/TVP_2017_62_2_a0/