@article{TVP_2017_62_1_a9,
author = {P. Embrechts and M. Kirchner},
title = {Hawkes graphs},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {163--193},
year = {2017},
volume = {62},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a9/}
}
P. Embrechts; M. Kirchner. Hawkes graphs. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 163-193. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a9/
[1] E. Bacry, S. Ga{ï}ffas, J. Muzy, A generalization error bound for sparse and low-rank multivariate Hawkes processes, arXiv: 1501.00725
[2] D. Bates, M. Maechler, Matrix: sparse and dense matrix classes and methods, 2015 http://CRAN.R-project.org/package=Matrix
[3] G. Csárdi, T. Nepusz, “The igraph software package for complex network research”, InterJournal Complex Systems, 1695 (2006)
[4] D. J. Daley, D. Vere-Jones, An introduction to the theory of point processes, v. I, Probab. Appl. (N. Y.), Elementary theory and methods, 2nd ed., Springer, New York, 2003, xxii+469 pp. ; v. II, General theory and structure, 2008, xviii+573 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[5] S. Delattre, N. Fournier, M. Hoffmann, “Hawkes processes on large networks”, Ann. Appl. Probab., 26:1 (2015), 216–261 | DOI | MR | Zbl
[6] A. Gunawardana, C. Meek, Puyang Xu, A model for temporal dependencies in event streams, Microsoft Research, 2011 https://www.microsoft.com/en-us/research/publication/a-model-for-temporal-dependencies-in-event-streams/
[7] P. Haccou, P. Jagers, V. Vatutin, Branching processes: variation, growth and extinction of populations, Cambridge Stud. Adapt. Dyn., 5, Cambridge Univ. Press, Cambridge, 2005, xii+316 pp. | DOI | MR | Zbl
[8] E. C. Hall, R. M. Willett, “Tracking dynamic point processes on networks”, IEEE Trans. Inform. Theory, 62:7 (2016), 4327–4346 | DOI | MR
[9] A. G. Hawkes, “Point spectra of some mutually exciting point processes”, J. Roy. Statist. Soc. Ser. B, 33:3 (1971), 438–443 | MR | Zbl
[10] A. G. Hawkes, “Spectra of some self-exciting and mutually exciting point processes”, Biometrika, 58 (1971), 83–90 | DOI | MR | Zbl
[11] A. G. Hawkes, “A cluster process representation of a self-exciting process”, J. Appl. Probab., 11:3 (1974), 493–503 | DOI | MR | Zbl
[12] T. Hawkes, “On the class of Sylow tower groups”, Math. Z., 105:5 (1968), 393–398 | DOI | MR | Zbl
[13] M. Kirchner, “An estimation procedure for the Hawkes process”, Quant. Finance, 1–25 (to appear) | DOI
[14] M. Kirchner, “Hawkes and INAR($\infty$) processes”, Stochastic Process. Appl., 126:8 (2016), 2494–2525 | DOI | MR | Zbl
[15] T. Liniger, Multivariate Hawkes processes, PhD thesis, ETH, Zurich, 2009
[16] C. Meek, Toward learning graphical and causal process models, Microsoft Research, 2014
[17] Y. Ogata, “Statistical models for earthquake occurences and residual analysis for point processes”, J. Amer. Statist. Assoc., 83:401 (1988), 9–27 | DOI
[18] J. Pearl, Causality. Models, reasoning, and inference, 2nd ed., Cambridge Univ. Press, Cambridge, 2009, xx+464 pp. | DOI | MR | Zbl
[19] Zhan Shi, Branching random walks (École d'Été de Probabilités de Saint-Flour, 2012), Lecture Notes in Math., 2151, Springer, Cham, 2015, x+133 pp. | DOI | MR | Zbl
[20] Ke Zhou, Hongyuan Zha, Le Song, “Learning social infectivity in sparse low-rank networks using multi-dimensional Hawkes processes”, Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS), JMLR W, 31, 2013, 641–649
[21] C. Watson, The geometric series of a matrix, 2015, 5 pp. http://www.math.uvic.ca/~dcwatson/work/geometric.pdf