Ordering results for aggregate claim amounts from two heterogeneous Marshall–Olkin extended exponential portfolios and their applications in insurance analysis
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 145-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we discuss the stochastic comparison of two classical surplus processes in a one-year insurance period. Under the Marshall–Olkin extended exponential random aggregate claim amounts, we extend one result of Khaledi and Ahmadi [J. Statist. Plann. Inference, 138 (2008), pp. 2243–2251]. Applications of our results to the value-at-risk and ruin probability are also given. Our results show that the heterogeneity of the risks in a given insurance portfolio tends to make the portfolio volatile, which in turn leads to requiring more capital.
Keywords: Marshall–Olkin extended exponential distribution, usual multivariate stochastic order, multivariate chain majorization, order statistics, hazard rate function, aggregate claim amounts, value-at-risk, ruin probability.
@article{TVP_2017_62_1_a8,
     author = {G. Barmalzan and A. T. Payandeh Najafabadi and N. Balakrishnan},
     title = {Ordering results for aggregate claim amounts from two heterogeneous {Marshall{\textendash}Olkin} extended exponential portfolios and their applications in insurance analysis},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {145--162},
     year = {2017},
     volume = {62},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a8/}
}
TY  - JOUR
AU  - G. Barmalzan
AU  - A. T. Payandeh Najafabadi
AU  - N. Balakrishnan
TI  - Ordering results for aggregate claim amounts from two heterogeneous Marshall–Olkin extended exponential portfolios and their applications in insurance analysis
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 145
EP  - 162
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a8/
LA  - en
ID  - TVP_2017_62_1_a8
ER  - 
%0 Journal Article
%A G. Barmalzan
%A A. T. Payandeh Najafabadi
%A N. Balakrishnan
%T Ordering results for aggregate claim amounts from two heterogeneous Marshall–Olkin extended exponential portfolios and their applications in insurance analysis
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 145-162
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a8/
%G en
%F TVP_2017_62_1_a8
G. Barmalzan; A. T. Payandeh Najafabadi; N. Balakrishnan. Ordering results for aggregate claim amounts from two heterogeneous Marshall–Olkin extended exponential portfolios and their applications in insurance analysis. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 145-162. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a8/

[1] K. Adamidis, T. Dimitrakopoulou, S. Loukas, “On an extension of the exponential-geometric distribution”, Statist. Probab. Lett., 73:3 (2005), 259–269 | DOI | MR | Zbl

[2] K. Adamidis, S. Loukas, “A lifetime distribution with decreasing failure rate”, Statist. Probab. Lett., 39:1 (1998), 35–42 | DOI | MR | Zbl

[3] E.-E. A. A. Aly, L. Benkherouf, “A new family of distributions based on probability generating functions”, Sankhyā B, 73:1 (2011), 70–80 | DOI | MR | Zbl

[4] N. Balakrishnan, A. P. Basu (eds.), The exponential distribution. Theory, methods and applications, Gordon and Breach Publishers, Amsterdam, 1995, xxvi+638 pp. | MR | Zbl

[5] N. Balakrishnan, X. Zhu, B. Al-zahrani, “Recursive computation of the single and product moments of order statistics from the complementary exponential-geometric distribution”, J. Statist. Comput. Simul., 85:11 (2015), 2187–2201 | DOI | MR

[6] G. Barmalzan, A. T. Payandeh Najafabadi, N. Balakrishnan, “Stochastic comparison of aggregate claim amounts between two heterogeneous portfolios and its applications”, Insurance Math. Econom., 61 (2015), 235–241 | DOI | Zbl

[7] S. Bennett, “Analysis of survival data by the proportional odds model”, Statistics in Medicine, 2:2 (1983), 273–277 | DOI

[8] M. Denuit, E. Frostig, “Heterogeneity and the need for capital in the individual model”, Scand. Actuar. J., 2006:1 (2006), 42–66 | DOI | MR | Zbl

[9] E. Frostig, “A comparison between homogeneous and heterogeneous portfolios”, Insurance Math. Econom., 29:1 (2001), 59–71 | DOI | MR | Zbl

[10] M. J. Goovaerts, F. De Vylder, J. Haezendonck, Insurance premiums. Theory and applications, North-Holland Publishing Co., Amsterdam, 1984, xi+406 pp. | MR | Zbl

[11] M. J. Goovaerts, R. Kaas, A. E. van Heerwaarden, T. Bauwelinckx, Effective actuarial methods, Insurance Ser., 3, North-Holland Publishing Co., Amsterdam, 1990, xiv+316 pp. | MR

[12] R. C. Gupta, C. Peng, “Estimating reliability in proportional odds ratio models”, Comput. Statist. Data Anal., 53:4 (2009), 1495–1510 | DOI | MR | Zbl

[13] Tai Zhong Hu, “Monotone coupling and stochastic ordering of order statistics”, Systems Sci. Math. Sci., 8:3 (1995), 209–214 | MR | Zbl

[14] T. Hu, L. Ruan, “A note on multivariate stochastic comparisons of Bernoulli random variables”, J. Statist. Plann. Inference, 126:1 (2004), 281–288 | DOI | MR | Zbl

[15] W. Hürlimann, “Higher degree stop-loss transforms and stochastic order. I. Theory”, Blätter der Deutschen Gesellschaft für Versicherungsmathematik, 24:3 (2000), 449–462 ; “II. Applications”, 465–476 | DOI | Zbl | DOI | Zbl

[16] P. Jorion, Value at risk. The new benchmark for managing financial risk, 2nd ed., McGraw-Hill, New York, 2000, 544 pp.

[17] R. Kaas, O. Hesselager, “Ordering claim size distribution and mixed Poisson probabilities”, Insurance Math. Econom., 17:2 (1995), 193–201 | DOI | MR | Zbl

[18] R. Kaas, A. E. Van Heerwaarden, M. J. Goovaerts, Ordering of actuarial risks, CAIRE Education Ser., 1, CAIRE, Brussels, 1994, viii+144 pp.

[19] S. Karlin, A. Novikoff, “Generalized convex inequalities”, Pacific J. Math., 13:4 (1963), 1251–1279 | DOI | MR | Zbl

[20] B.-E. Khaledi, S. S. Ahmadi, “On stochastic comparison between aggregate claim amounts”, J. Statist. Plann. Inference, 138:7 (2008), 2243–2251 | DOI | MR | Zbl

[21] S. N. U. A. Kirmani, R. C. Gupta, “On the proportional odds model in survival analysis”, Ann. Inst. Statist. Math., 53:2 (2001), 203–216 | DOI | MR | Zbl

[22] X. Li, P. Zhao, “On the mixture of proportional odds models”, Comm. Statist. Theory Methods, 40:2 (2011), 333–344 | DOI | MR | Zbl

[23] C. Ma, “Convex orders for linear combinations of random variables”, J. Statist. Plann. Inference, 84:1-2 (2000), 11–25 | DOI | MR | Zbl

[24] A. W. Marshall, I. Olkin, “A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families”, Biometrika, 84:3 (1997), 641–652 | DOI | MR | Zbl

[25] A. W. Marshall, I. Olkin, Life distributions. Structure of nonparametric, semiparametric, and parametric families, Springer Ser. Statist., Springer, New York, 2007, xx+782 pp. | DOI | MR | Zbl

[26] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: theory of majorization and its applications, Springer Ser. Statist., 2nd ed., Springer, New York, 2011, xxviii+909 pp. ; A. Marshall, I. Olkin, Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983, 575 pp. | DOI | MR | Zbl | MR | Zbl

[27] A. Müller, D. Stoyan, Comparison methods for stochastic models and risks, Wiley Ser. Probab. Stat., John Wiley Sons, Ltd., Chichester, 2002, xii+330 pp. | MR | Zbl

[28] A. K. Nanda, S. Das, “Stochastic orders of the Marshall–Olkin extended distribution”, Statist. Probab. Lett., 82:2 (2012), 295–302 | DOI | MR | Zbl

[29] P. G. Sankaran, K. Jayakumar, “On proportional odds models”, Statist. Papers, 49:4 (2008), 779–789 | DOI | MR | Zbl

[30] M. Shaked, J. G. Shanthikumar, Stochastic orders, Springer Ser. Statist., Springer, New York, 2007, xvi+473 pp. | DOI | MR | Zbl