@article{TVP_2017_62_1_a8,
author = {G. Barmalzan and A. T. Payandeh Najafabadi and N. Balakrishnan},
title = {Ordering results for aggregate claim amounts from two heterogeneous {Marshall{\textendash}Olkin} extended exponential portfolios and their applications in insurance analysis},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {145--162},
year = {2017},
volume = {62},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a8/}
}
TY - JOUR AU - G. Barmalzan AU - A. T. Payandeh Najafabadi AU - N. Balakrishnan TI - Ordering results for aggregate claim amounts from two heterogeneous Marshall–Olkin extended exponential portfolios and their applications in insurance analysis JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 145 EP - 162 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a8/ LA - en ID - TVP_2017_62_1_a8 ER -
%0 Journal Article %A G. Barmalzan %A A. T. Payandeh Najafabadi %A N. Balakrishnan %T Ordering results for aggregate claim amounts from two heterogeneous Marshall–Olkin extended exponential portfolios and their applications in insurance analysis %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 145-162 %V 62 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a8/ %G en %F TVP_2017_62_1_a8
G. Barmalzan; A. T. Payandeh Najafabadi; N. Balakrishnan. Ordering results for aggregate claim amounts from two heterogeneous Marshall–Olkin extended exponential portfolios and their applications in insurance analysis. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 145-162. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a8/
[1] K. Adamidis, T. Dimitrakopoulou, S. Loukas, “On an extension of the exponential-geometric distribution”, Statist. Probab. Lett., 73:3 (2005), 259–269 | DOI | MR | Zbl
[2] K. Adamidis, S. Loukas, “A lifetime distribution with decreasing failure rate”, Statist. Probab. Lett., 39:1 (1998), 35–42 | DOI | MR | Zbl
[3] E.-E. A. A. Aly, L. Benkherouf, “A new family of distributions based on probability generating functions”, Sankhyā B, 73:1 (2011), 70–80 | DOI | MR | Zbl
[4] N. Balakrishnan, A. P. Basu (eds.), The exponential distribution. Theory, methods and applications, Gordon and Breach Publishers, Amsterdam, 1995, xxvi+638 pp. | MR | Zbl
[5] N. Balakrishnan, X. Zhu, B. Al-zahrani, “Recursive computation of the single and product moments of order statistics from the complementary exponential-geometric distribution”, J. Statist. Comput. Simul., 85:11 (2015), 2187–2201 | DOI | MR
[6] G. Barmalzan, A. T. Payandeh Najafabadi, N. Balakrishnan, “Stochastic comparison of aggregate claim amounts between two heterogeneous portfolios and its applications”, Insurance Math. Econom., 61 (2015), 235–241 | DOI | Zbl
[7] S. Bennett, “Analysis of survival data by the proportional odds model”, Statistics in Medicine, 2:2 (1983), 273–277 | DOI
[8] M. Denuit, E. Frostig, “Heterogeneity and the need for capital in the individual model”, Scand. Actuar. J., 2006:1 (2006), 42–66 | DOI | MR | Zbl
[9] E. Frostig, “A comparison between homogeneous and heterogeneous portfolios”, Insurance Math. Econom., 29:1 (2001), 59–71 | DOI | MR | Zbl
[10] M. J. Goovaerts, F. De Vylder, J. Haezendonck, Insurance premiums. Theory and applications, North-Holland Publishing Co., Amsterdam, 1984, xi+406 pp. | MR | Zbl
[11] M. J. Goovaerts, R. Kaas, A. E. van Heerwaarden, T. Bauwelinckx, Effective actuarial methods, Insurance Ser., 3, North-Holland Publishing Co., Amsterdam, 1990, xiv+316 pp. | MR
[12] R. C. Gupta, C. Peng, “Estimating reliability in proportional odds ratio models”, Comput. Statist. Data Anal., 53:4 (2009), 1495–1510 | DOI | MR | Zbl
[13] Tai Zhong Hu, “Monotone coupling and stochastic ordering of order statistics”, Systems Sci. Math. Sci., 8:3 (1995), 209–214 | MR | Zbl
[14] T. Hu, L. Ruan, “A note on multivariate stochastic comparisons of Bernoulli random variables”, J. Statist. Plann. Inference, 126:1 (2004), 281–288 | DOI | MR | Zbl
[15] W. Hürlimann, “Higher degree stop-loss transforms and stochastic order. I. Theory”, Blätter der Deutschen Gesellschaft für Versicherungsmathematik, 24:3 (2000), 449–462 ; “II. Applications”, 465–476 | DOI | Zbl | DOI | Zbl
[16] P. Jorion, Value at risk. The new benchmark for managing financial risk, 2nd ed., McGraw-Hill, New York, 2000, 544 pp.
[17] R. Kaas, O. Hesselager, “Ordering claim size distribution and mixed Poisson probabilities”, Insurance Math. Econom., 17:2 (1995), 193–201 | DOI | MR | Zbl
[18] R. Kaas, A. E. Van Heerwaarden, M. J. Goovaerts, Ordering of actuarial risks, CAIRE Education Ser., 1, CAIRE, Brussels, 1994, viii+144 pp.
[19] S. Karlin, A. Novikoff, “Generalized convex inequalities”, Pacific J. Math., 13:4 (1963), 1251–1279 | DOI | MR | Zbl
[20] B.-E. Khaledi, S. S. Ahmadi, “On stochastic comparison between aggregate claim amounts”, J. Statist. Plann. Inference, 138:7 (2008), 2243–2251 | DOI | MR | Zbl
[21] S. N. U. A. Kirmani, R. C. Gupta, “On the proportional odds model in survival analysis”, Ann. Inst. Statist. Math., 53:2 (2001), 203–216 | DOI | MR | Zbl
[22] X. Li, P. Zhao, “On the mixture of proportional odds models”, Comm. Statist. Theory Methods, 40:2 (2011), 333–344 | DOI | MR | Zbl
[23] C. Ma, “Convex orders for linear combinations of random variables”, J. Statist. Plann. Inference, 84:1-2 (2000), 11–25 | DOI | MR | Zbl
[24] A. W. Marshall, I. Olkin, “A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families”, Biometrika, 84:3 (1997), 641–652 | DOI | MR | Zbl
[25] A. W. Marshall, I. Olkin, Life distributions. Structure of nonparametric, semiparametric, and parametric families, Springer Ser. Statist., Springer, New York, 2007, xx+782 pp. | DOI | MR | Zbl
[26] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: theory of majorization and its applications, Springer Ser. Statist., 2nd ed., Springer, New York, 2011, xxviii+909 pp. ; A. Marshall, I. Olkin, Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983, 575 pp. | DOI | MR | Zbl | MR | Zbl
[27] A. Müller, D. Stoyan, Comparison methods for stochastic models and risks, Wiley Ser. Probab. Stat., John Wiley Sons, Ltd., Chichester, 2002, xii+330 pp. | MR | Zbl
[28] A. K. Nanda, S. Das, “Stochastic orders of the Marshall–Olkin extended distribution”, Statist. Probab. Lett., 82:2 (2012), 295–302 | DOI | MR | Zbl
[29] P. G. Sankaran, K. Jayakumar, “On proportional odds models”, Statist. Papers, 49:4 (2008), 779–789 | DOI | MR | Zbl
[30] M. Shaked, J. G. Shanthikumar, Stochastic orders, Springer Ser. Statist., Springer, New York, 2007, xvi+473 pp. | DOI | MR | Zbl