@article{TVP_2017_62_1_a7,
author = {Yu. V. Prokhorov and F. G\"otze and V. V. Ulyanov},
title = {On bounds for characteristic functions of the powers of asymptotically normal random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {122--144},
year = {2017},
volume = {62},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a7/}
}
TY - JOUR AU - Yu. V. Prokhorov AU - F. Götze AU - V. V. Ulyanov TI - On bounds for characteristic functions of the powers of asymptotically normal random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 122 EP - 144 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a7/ LA - ru ID - TVP_2017_62_1_a7 ER -
%0 Journal Article %A Yu. V. Prokhorov %A F. Götze %A V. V. Ulyanov %T On bounds for characteristic functions of the powers of asymptotically normal random variables %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 122-144 %V 62 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a7/ %G ru %F TVP_2017_62_1_a7
Yu. V. Prokhorov; F. Götze; V. V. Ulyanov. On bounds for characteristic functions of the powers of asymptotically normal random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 122-144. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a7/
[1] G. I. Arkhipov, V. N. Chubarikov, A. A. Karatsuba, Trigonometric sums in number theory and analysis, De Gruyter Exp. Math., 39, Walter de Gruyter GmbH Co. KG, Berlin, 2004, x+554 pp. | DOI | MR | MR | Zbl | Zbl
[2] V. Yu. Bentkus, “Asymptotic expansions in the central limit theorem in Hilbert space”, Lith. Math. J., 24:3 (1984), 210–225 | DOI | MR | Zbl
[3] S. N. Bernshtein, Teoriya veroyatnostei, 4-e izd., Gostekhizdat, M.–L., 1946, 556 pp. | Zbl
[4] C.-G. Esseen, “On the concentration function of a sum of independent random variables”, Z. Wahrscheinlichkeitstheor. verw. Geb., 9:4 (1968), 290–308 | DOI | MR | Zbl
[5] Y. Fujikoshi, V. V. Ulyanov, R. Shimizu, Multivariate statistics. High-dimensional and large-sample approximations, Wiley Ser. Probab. Statist., John Wiley Sons, Inc., Hoboken, NJ, 2010, xviii+533 pp. | DOI | MR | Zbl
[6] F. Götze, “Asymptotic expansions for bivariate von Mises functionals”, Z. Wahrscheinlichkeitstheor. verw. Geb., 50:3 (1979), 333–355 | DOI | MR | Zbl
[7] F. Götze, A. A. Naumov, V. V. Ulyanov, “Asymptotic analysis of symmetric functions”, J. Theoret. Probab., first online 2016 (to appear), arXiv: 1502.06267v2 | DOI
[8] F. Götze, Yu. V. Prokhorov, V. V. Ul'yanov, “Bounds for characteristic functions of polynomials in asymptotically normal random variables”, Russian Math. Surveys, 51:2 (1996), 181–204 | DOI | DOI | MR | Zbl
[9] F. Götze, V. V. Prohorov, V. V. Ulyanov, “A stochastic analogue of the Vinogradov mean value theorem”, Probability theory and mathematical statistics (Tokyo, 1995), World Sci. Publ., River Edge, NJ, 1996, 62–82 | MR | Zbl
[10] F. Götze, Yu. V. Prokhorov, V. V. Ulyanov, “On smooth behavior of probability distributions under polynomial mappings”, Theory Probab. Appl., 42:1 (1998), 28–38 | DOI | DOI | MR | Zbl
[11] F. Götze, A. Yu. Zaitsev, “Explicit rates of approximation in the CLT for quadratic forms”, Ann. Probab., 42:1 (2014), 354–397 | DOI | MR | Zbl
[12] W. Hengartner, R. Theodorescu, Concentration functions, Probab. Math. Statist., 20, Academic Press, New York–London, 1973, xii+139 pp. | MR | MR | Zbl | Zbl
[13] Yu. V. Prokhorov, V. V. Ulyanov, “Some approximation problems in statistics and probability”, Limit theorems in probability, statistics and number theory, Springer Proc. Math. Statist., 42, Springer, Heidelberg, 2013, 235–249 | DOI | MR | Zbl
[14] V. V. Sazonov, V. V. Ul'yanov, “Asymptotic expansions of the probability that the sum of independent random variables hits a ball in a Hilbert space”, Russian Math. Surveys, 50:5 (1995), 1045–1063 | DOI | MR | Zbl
[15] V. V. Ulyanov, “On properties of polynomials in random elements”, Theory Probab. Appl., 60:2 (2016), 325–336 | DOI | DOI | Zbl
[16] I. M. Vinogradov, Selected works, Springer-Verlag, Berlin, 1985, viii+401 pp. | MR | Zbl
[17] A. Yu. Zaitsev, “Multidimensional version of the second uniform limit theorem of Kolmogorov”, Theory Probab. Appl., 34:1 (1989), 108–128 | DOI | MR | Zbl