On bounds for characteristic functions of the powers of asymptotically normal random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 122-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain upper bounds for the absolute values of the characteristic functions of the $k$th powers of asymptotically normal random variables. Estimates are proved for the case when asymptotically normal random variables are normalized sums of independent identically distributed summands with a “regular” distribution. Possible generalizations are considered. The estimates extend the results of previous studies, where for the distributions of the summands, the presence of either a discrete or an absolutely continuous component was required. The proofs of the bounds are based on the stochastic generalization of the I. M. Vinogradov mean value theorem, which is also obtained in the present paper.
Keywords: powers of random variables, bounds for characteristic functions, the Vinogradov mean value theorem, stochastic generalization.
@article{TVP_2017_62_1_a7,
     author = {Yu. V. Prokhorov and F. G\"otze and V. V. Ulyanov},
     title = {On bounds for characteristic functions of the powers of asymptotically normal random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {122--144},
     year = {2017},
     volume = {62},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a7/}
}
TY  - JOUR
AU  - Yu. V. Prokhorov
AU  - F. Götze
AU  - V. V. Ulyanov
TI  - On bounds for characteristic functions of the powers of asymptotically normal random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 122
EP  - 144
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a7/
LA  - ru
ID  - TVP_2017_62_1_a7
ER  - 
%0 Journal Article
%A Yu. V. Prokhorov
%A F. Götze
%A V. V. Ulyanov
%T On bounds for characteristic functions of the powers of asymptotically normal random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 122-144
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a7/
%G ru
%F TVP_2017_62_1_a7
Yu. V. Prokhorov; F. Götze; V. V. Ulyanov. On bounds for characteristic functions of the powers of asymptotically normal random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 122-144. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a7/

[1] G. I. Arkhipov, V. N. Chubarikov, A. A. Karatsuba, Trigonometric sums in number theory and analysis, De Gruyter Exp. Math., 39, Walter de Gruyter GmbH Co. KG, Berlin, 2004, x+554 pp. | DOI | MR | MR | Zbl | Zbl

[2] V. Yu. Bentkus, “Asymptotic expansions in the central limit theorem in Hilbert space”, Lith. Math. J., 24:3 (1984), 210–225 | DOI | MR | Zbl

[3] S. N. Bernshtein, Teoriya veroyatnostei, 4-e izd., Gostekhizdat, M.–L., 1946, 556 pp. | Zbl

[4] C.-G. Esseen, “On the concentration function of a sum of independent random variables”, Z. Wahrscheinlichkeitstheor. verw. Geb., 9:4 (1968), 290–308 | DOI | MR | Zbl

[5] Y. Fujikoshi, V. V. Ulyanov, R. Shimizu, Multivariate statistics. High-dimensional and large-sample approximations, Wiley Ser. Probab. Statist., John Wiley Sons, Inc., Hoboken, NJ, 2010, xviii+533 pp. | DOI | MR | Zbl

[6] F. Götze, “Asymptotic expansions for bivariate von Mises functionals”, Z. Wahrscheinlichkeitstheor. verw. Geb., 50:3 (1979), 333–355 | DOI | MR | Zbl

[7] F. Götze, A. A. Naumov, V. V. Ulyanov, “Asymptotic analysis of symmetric functions”, J. Theoret. Probab., first online 2016 (to appear), arXiv: 1502.06267v2 | DOI

[8] F. Götze, Yu. V. Prokhorov, V. V. Ul'yanov, “Bounds for characteristic functions of polynomials in asymptotically normal random variables”, Russian Math. Surveys, 51:2 (1996), 181–204 | DOI | DOI | MR | Zbl

[9] F. Götze, V. V. Prohorov, V. V. Ulyanov, “A stochastic analogue of the Vinogradov mean value theorem”, Probability theory and mathematical statistics (Tokyo, 1995), World Sci. Publ., River Edge, NJ, 1996, 62–82 | MR | Zbl

[10] F. Götze, Yu. V. Prokhorov, V. V. Ulyanov, “On smooth behavior of probability distributions under polynomial mappings”, Theory Probab. Appl., 42:1 (1998), 28–38 | DOI | DOI | MR | Zbl

[11] F. Götze, A. Yu. Zaitsev, “Explicit rates of approximation in the CLT for quadratic forms”, Ann. Probab., 42:1 (2014), 354–397 | DOI | MR | Zbl

[12] W. Hengartner, R. Theodorescu, Concentration functions, Probab. Math. Statist., 20, Academic Press, New York–London, 1973, xii+139 pp. | MR | MR | Zbl | Zbl

[13] Yu. V. Prokhorov, V. V. Ulyanov, “Some approximation problems in statistics and probability”, Limit theorems in probability, statistics and number theory, Springer Proc. Math. Statist., 42, Springer, Heidelberg, 2013, 235–249 | DOI | MR | Zbl

[14] V. V. Sazonov, V. V. Ul'yanov, “Asymptotic expansions of the probability that the sum of independent random variables hits a ball in a Hilbert space”, Russian Math. Surveys, 50:5 (1995), 1045–1063 | DOI | MR | Zbl

[15] V. V. Ulyanov, “On properties of polynomials in random elements”, Theory Probab. Appl., 60:2 (2016), 325–336 | DOI | DOI | Zbl

[16] I. M. Vinogradov, Selected works, Springer-Verlag, Berlin, 1985, viii+401 pp. | MR | Zbl

[17] A. Yu. Zaitsev, “Multidimensional version of the second uniform limit theorem of Kolmogorov”, Theory Probab. Appl., 34:1 (1989), 108–128 | DOI | MR | Zbl