Estimates for the concentration functions under the weakened moments
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 104-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates are constructed for the deviation of the concentration functions of sums of independent random variables with finite variances from the folded normal distribution function without any assumptions concerning the existence of the moments of summands of higher orders. The results obtained are extended to Poisson-binomial, binomial, and Poisson random sums. Under the same assumptions, bounds are obtained for the approximation of the concentration functions of mixed Poisson random sums by the corresponding limit distributions. In particular, bounds are put forward for the accuracy of approximation of the concentration functions of geometric, negative binomial, and Sichel random sums by exponential, folded variance gamma, and folded Student distributions. Numerical estimates of all the constants involved are written down explicitly.
Keywords: distribution function, central limit theorem, folded normal distribution, uniform metric, mixed Poisson random sum, geometric random sum, negative binomial random sum, exponential distribution, folded variance gamma distribution, folded Student distribution
Mots-clés : normal distribution, Poisson-binomial distribution, Poisson-binomial random sum, binomial random sum, Poisson random sum, gamma distribution, inverse gamma distribution, Sichel distribution, Laplace distribution, absolute constant.
@article{TVP_2017_62_1_a6,
     author = {V. Yu. Korolev and A. V. Dorofeyeva},
     title = {Estimates for the concentration functions under the weakened moments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {104--121},
     year = {2017},
     volume = {62},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a6/}
}
TY  - JOUR
AU  - V. Yu. Korolev
AU  - A. V. Dorofeyeva
TI  - Estimates for the concentration functions under the weakened moments
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 104
EP  - 121
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a6/
LA  - ru
ID  - TVP_2017_62_1_a6
ER  - 
%0 Journal Article
%A V. Yu. Korolev
%A A. V. Dorofeyeva
%T Estimates for the concentration functions under the weakened moments
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 104-121
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a6/
%G ru
%F TVP_2017_62_1_a6
V. Yu. Korolev; A. V. Dorofeyeva. Estimates for the concentration functions under the weakened moments. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 104-121. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a6/

[1] R. P. Agnew, “Estimates for global central limit theorems”, Ann. Math. Statist., 28 (1957), 26–42 | DOI | MR | Zbl

[2] A. D. Barbour, P. Hall, “Stein's method and the Berry–Esséen theorem”, Austral. J. Statist., 26:1 (1984), 8–15 | DOI | MR | Zbl

[3] V. E. Bening, V. Yu. Korolev, “On an application of the Student distribution in the theory of probability and mathematical statistics”, Theory Probab. Appl., 49:3 (2005), 377–391 | DOI | DOI | MR | Zbl

[4] V. E. Bening, N. K. Galieva, V. Yu. Korolev, “Ob approksimatsii funktsii kontsentratsii regulyarnykh statistik, postroennykh po vyborkam sluchainogo ob'ema”, Statisticheskie metody otsenivaniya i proverki gipotez, 24, Izd-vo Permskogo gos. nats. issled. un-ta, Perm, 2012, 110–124

[5] V. E. Bening, N. K. Galieva, V. Yu. Korolev, “Ob otsenkakh funktsii kontsentratsii regulyarnykh statistik, postroennykh po vyborkam sluchaiinogo ob'ema”, Inform. i ee primen., 7:1 (2013), 116–123

[6] L. H. Y. Chen, Qi-Man Shao, “A non-uniform Berry–Esseen bound via Stein's method”, Probab. Theory Related Fields, 120:2 (2001), 236–254 | DOI | MR | Zbl

[7] J. C. Cox, S. A. Ross, M. Rubinstein, “Option pricing: a simplified approach”, J. Financ. Econ., 7:3 (1979), 229–263 | DOI | Zbl

[8] H. Cramér, “On the mathematical theory of risk”, Skandia jubilee volume, Centraltryckeriet, Stockholm, 1930, 7–84 ; reprinted in Collected works, v. 1, Springer-Verlag, Berlin, 1994, 601–678 | Zbl | MR | Zbl

[9] W. Feller, “On the Berry–Esseen theorem”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 10:3 (1968), 261–268 | DOI | MR | Zbl

[10] W. Hengartner, R. Theodorescu, Concentration functions, Probab. Math. Statist., 20, Academic Press, New York–London, 1973, xii+139 pp. | MR | MR | Zbl | Zbl

[11] V. Kalashnikov, Geometric sums: bounds for rare events with applications. Risk analysis, reliability, queueing, Math. Appl., 413, Kluwer Academic Publishers Group, Dordrecht, 1997, xviii+265 pp. | DOI | MR | Zbl

[12] M. L. Katz, “Note on the Berry–Esseen theorem”, Ann. Math. Statist., 34:3 (1963), 1107–1108 | DOI | MR | Zbl

[13] V. Yu. Korolev, V. E. Bening, S. Ya. Shorgin, Matematicheskie osnovy teorii riska, 2-e izd., pererab. i dop., Fizmatlit, M., 2011, 619 pp. | Zbl

[14] V. Korolev, S. Popov, “On the universal constant in the Katz–Petrov and Osipov inequalities”, Discuss. Math. Probab. Stat., 31:1-2 (2011), 29–39 | DOI | MR | Zbl

[15] V. Korolev, I. Shevtsova, “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scand. Actuar. J., 2012:2 (2012), 81–105 | DOI | MR | Zbl

[16] V. Yu. Korolev, S. Popov, “An improvement of convergence rate estimates in the central limit theorem under absence of moments higher than the second”, Theory Probab. Appl., 56:4 (2011), 682–691 | DOI | DOI | MR | Zbl

[17] V. Yu. Korolev, S. V. Popov, “Improvement of convergence rate estimates in the central limit theorem under weakened moment conditions”, Dokl. Math., 86:1 (2012), 506–511 | DOI | MR | Zbl

[18] V. Yu. Korolev, A. V. Dorofeeva, “Bounds of the accuracy of the normal approximation to the distributions of random sums under relaxed moment conditions”, Lithuanian Math. J. (to appear)

[19] P. Lévy, Théorie de l'addition des variables aléatoires, Monographies des Probabilités, 1, Gauthier-Villars, Paris, 1937, xvii+328 pp. | Zbl

[20] D. B. Madan, E. Seneta, “The variance gamma (V.G.) model for share market returns”, J. of Business, 63:4 (1990), 511–524 | DOI

[21] L. V. Osipov, “Refinement of Lindeberg's theorem”, Theory Probab. Appl., 11:2 (1966), 299–302 | DOI | MR | Zbl

[22] L. Paditz, “Bemerkungen zu einer Fehlerabschätzung im zentralen Grenzwertsatz”, Wiss. Z. Hochsch. Verkehrswesen “Friedrich List” Dresden, 27:4 (1980), 829–837 | MR | Zbl

[23] L. Paditz, “On error-estimates in the central limit theorem for generalized linear discounting”, Math. Operationsforsch. Statist. Ser. Statist., 15:4 (1984), 601–610 | DOI | MR | Zbl

[24] L. Paditz, “Über eine globale Fehlerabschätzung im zentralen Grenzwertsatz”, Wiss. Z. Hochsch. Verkehrswesen “Friedrich List” Dresden, 33:2 (1986), 399–404 | MR | Zbl

[25] V. V. Petrov, “An estimate of the deviation of the distribution of a sum of independent random variables from the normal law”, Soviet Math. Dokl., 6 (1965), 242–244 | MR | Zbl

[26] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | MR | Zbl | Zbl

[27] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl

[28] I. G. Shevtsova, “On the accuracy of the normal approximation to compound Poisson distributions”, Theory Probab. Appl., 58:1 (2014), 138–158 | DOI | DOI | MR | Zbl

[29] I. G. Shevtsova, “On the absolute constants in the Berry–Esseen-type inequalities”, Dokl. Math., 89:3 (2014), 378–381 | DOI | DOI | MR | Zbl

[30] H. S. Sichel, “On a family of discrete distributions particularly suited to represent long-tailed frequency data”, Proceedings of the 3rd Symposium on Mathematical Statistics, CSIR, Pretoria, 1971, 51–97 | Zbl

[31] G. E. Willmot, “On recursive evaluation of mixed Poisson probabilities and related quantities”, Scand. Actuar. J., 1993:2 (1993), 114–133 | MR | Zbl

[32] V. M. Zolotarev, Modern theory of summation of random variables, Mod. Probab. Stat., rev. and enlarged vers., VSP, Utrecht, 1997, x+412 pp. | DOI | MR | MR | Zbl | Zbl