Mots-clés : normal distribution, Poisson-binomial distribution, Poisson-binomial random sum, binomial random sum, Poisson random sum, gamma distribution, inverse gamma distribution, Sichel distribution, Laplace distribution, absolute constant.
@article{TVP_2017_62_1_a6,
author = {V. Yu. Korolev and A. V. Dorofeyeva},
title = {Estimates for the concentration functions under the weakened moments},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {104--121},
year = {2017},
volume = {62},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a6/}
}
V. Yu. Korolev; A. V. Dorofeyeva. Estimates for the concentration functions under the weakened moments. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 104-121. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a6/
[1] R. P. Agnew, “Estimates for global central limit theorems”, Ann. Math. Statist., 28 (1957), 26–42 | DOI | MR | Zbl
[2] A. D. Barbour, P. Hall, “Stein's method and the Berry–Esséen theorem”, Austral. J. Statist., 26:1 (1984), 8–15 | DOI | MR | Zbl
[3] V. E. Bening, V. Yu. Korolev, “On an application of the Student distribution in the theory of probability and mathematical statistics”, Theory Probab. Appl., 49:3 (2005), 377–391 | DOI | DOI | MR | Zbl
[4] V. E. Bening, N. K. Galieva, V. Yu. Korolev, “Ob approksimatsii funktsii kontsentratsii regulyarnykh statistik, postroennykh po vyborkam sluchainogo ob'ema”, Statisticheskie metody otsenivaniya i proverki gipotez, 24, Izd-vo Permskogo gos. nats. issled. un-ta, Perm, 2012, 110–124
[5] V. E. Bening, N. K. Galieva, V. Yu. Korolev, “Ob otsenkakh funktsii kontsentratsii regulyarnykh statistik, postroennykh po vyborkam sluchaiinogo ob'ema”, Inform. i ee primen., 7:1 (2013), 116–123
[6] L. H. Y. Chen, Qi-Man Shao, “A non-uniform Berry–Esseen bound via Stein's method”, Probab. Theory Related Fields, 120:2 (2001), 236–254 | DOI | MR | Zbl
[7] J. C. Cox, S. A. Ross, M. Rubinstein, “Option pricing: a simplified approach”, J. Financ. Econ., 7:3 (1979), 229–263 | DOI | Zbl
[8] H. Cramér, “On the mathematical theory of risk”, Skandia jubilee volume, Centraltryckeriet, Stockholm, 1930, 7–84 ; reprinted in Collected works, v. 1, Springer-Verlag, Berlin, 1994, 601–678 | Zbl | MR | Zbl
[9] W. Feller, “On the Berry–Esseen theorem”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 10:3 (1968), 261–268 | DOI | MR | Zbl
[10] W. Hengartner, R. Theodorescu, Concentration functions, Probab. Math. Statist., 20, Academic Press, New York–London, 1973, xii+139 pp. | MR | MR | Zbl | Zbl
[11] V. Kalashnikov, Geometric sums: bounds for rare events with applications. Risk analysis, reliability, queueing, Math. Appl., 413, Kluwer Academic Publishers Group, Dordrecht, 1997, xviii+265 pp. | DOI | MR | Zbl
[12] M. L. Katz, “Note on the Berry–Esseen theorem”, Ann. Math. Statist., 34:3 (1963), 1107–1108 | DOI | MR | Zbl
[13] V. Yu. Korolev, V. E. Bening, S. Ya. Shorgin, Matematicheskie osnovy teorii riska, 2-e izd., pererab. i dop., Fizmatlit, M., 2011, 619 pp. | Zbl
[14] V. Korolev, S. Popov, “On the universal constant in the Katz–Petrov and Osipov inequalities”, Discuss. Math. Probab. Stat., 31:1-2 (2011), 29–39 | DOI | MR | Zbl
[15] V. Korolev, I. Shevtsova, “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scand. Actuar. J., 2012:2 (2012), 81–105 | DOI | MR | Zbl
[16] V. Yu. Korolev, S. Popov, “An improvement of convergence rate estimates in the central limit theorem under absence of moments higher than the second”, Theory Probab. Appl., 56:4 (2011), 682–691 | DOI | DOI | MR | Zbl
[17] V. Yu. Korolev, S. V. Popov, “Improvement of convergence rate estimates in the central limit theorem under weakened moment conditions”, Dokl. Math., 86:1 (2012), 506–511 | DOI | MR | Zbl
[18] V. Yu. Korolev, A. V. Dorofeeva, “Bounds of the accuracy of the normal approximation to the distributions of random sums under relaxed moment conditions”, Lithuanian Math. J. (to appear)
[19] P. Lévy, Théorie de l'addition des variables aléatoires, Monographies des Probabilités, 1, Gauthier-Villars, Paris, 1937, xvii+328 pp. | Zbl
[20] D. B. Madan, E. Seneta, “The variance gamma (V.G.) model for share market returns”, J. of Business, 63:4 (1990), 511–524 | DOI
[21] L. V. Osipov, “Refinement of Lindeberg's theorem”, Theory Probab. Appl., 11:2 (1966), 299–302 | DOI | MR | Zbl
[22] L. Paditz, “Bemerkungen zu einer Fehlerabschätzung im zentralen Grenzwertsatz”, Wiss. Z. Hochsch. Verkehrswesen “Friedrich List” Dresden, 27:4 (1980), 829–837 | MR | Zbl
[23] L. Paditz, “On error-estimates in the central limit theorem for generalized linear discounting”, Math. Operationsforsch. Statist. Ser. Statist., 15:4 (1984), 601–610 | DOI | MR | Zbl
[24] L. Paditz, “Über eine globale Fehlerabschätzung im zentralen Grenzwertsatz”, Wiss. Z. Hochsch. Verkehrswesen “Friedrich List” Dresden, 33:2 (1986), 399–404 | MR | Zbl
[25] V. V. Petrov, “An estimate of the deviation of the distribution of a sum of independent random variables from the normal law”, Soviet Math. Dokl., 6 (1965), 242–244 | MR | Zbl
[26] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | MR | Zbl | Zbl
[27] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl
[28] I. G. Shevtsova, “On the accuracy of the normal approximation to compound Poisson distributions”, Theory Probab. Appl., 58:1 (2014), 138–158 | DOI | DOI | MR | Zbl
[29] I. G. Shevtsova, “On the absolute constants in the Berry–Esseen-type inequalities”, Dokl. Math., 89:3 (2014), 378–381 | DOI | DOI | MR | Zbl
[30] H. S. Sichel, “On a family of discrete distributions particularly suited to represent long-tailed frequency data”, Proceedings of the 3rd Symposium on Mathematical Statistics, CSIR, Pretoria, 1971, 51–97 | Zbl
[31] G. E. Willmot, “On recursive evaluation of mixed Poisson probabilities and related quantities”, Scand. Actuar. J., 1993:2 (1993), 114–133 | MR | Zbl
[32] V. M. Zolotarev, Modern theory of summation of random variables, Mod. Probab. Stat., rev. and enlarged vers., VSP, Utrecht, 1997, x+412 pp. | DOI | MR | MR | Zbl | Zbl