Keywords: local semicircle law
@article{TVP_2017_62_1_a5,
author = {F. G\"otze and A. A. Naumov and A. N. Tikhomirov},
title = {Local semicircle law under moment conditions: {Stieltjes} transform, rigidity and delocalization},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {72--103},
year = {2017},
volume = {62},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a5/}
}
TY - JOUR AU - F. Götze AU - A. A. Naumov AU - A. N. Tikhomirov TI - Local semicircle law under moment conditions: Stieltjes transform, rigidity and delocalization JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 72 EP - 103 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a5/ LA - ru ID - TVP_2017_62_1_a5 ER -
%0 Journal Article %A F. Götze %A A. A. Naumov %A A. N. Tikhomirov %T Local semicircle law under moment conditions: Stieltjes transform, rigidity and delocalization %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 72-103 %V 62 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a5/ %G ru %F TVP_2017_62_1_a5
F. Götze; A. A. Naumov; A. N. Tikhomirov. Local semicircle law under moment conditions: Stieltjes transform, rigidity and delocalization. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 72-103. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a5/
[1] L. Arnold, “On the asymptotic distribution of the eigenvalues of random matrices”, J. Math. Anal. Appl., 20:2 (1967), 262–268 | DOI | MR | Zbl
[2] Z. Bai, J. Hu, G. Pan, W. Zhou, “A note on rate of convergence in probability to semicircular law”, Electron. J. Probab., 16 (2011), paper No 88, 2439–2451 | DOI | MR | Zbl
[3] Z. Bai, J. W. Silverstein, Spectral analysis of large dimensional random matrices, Springer Ser. Statist., 2nd ed., Springer, New York, 2010, xvi+551 pp. | DOI | MR | Zbl
[4] M. Banna, F. Merlevède, M. Peligrad, “On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries”, Stochastic Process. Appl., 125:7 (2015), 2700–2726 | DOI | MR | Zbl
[5] C. Cacciapuoti, A. Maltsev, B. Schlein, “Bounds for the Stieltjes transform and the density of states of Wigner matrices”, Probab. Theory Related Fields, 163:1-2 (2015), 1–59 | DOI | MR | Zbl
[6] L. Erdős, “Universality of Wigner random matrices: a survey of recent results”, Russian Math. Surveys, 66:3 (2011), 507–626 | DOI | DOI | MR | Zbl
[7] L. Erd{ő}s, A. Knowles, H.-T. Yau, J. Yin, “Spectral statistics of Erd{ő}s–Rényi graphs II: Eigenvalue spacing and the extreme eigenvalues”, Comm. Math. Phys., 314:3 (2012), 587–640 | DOI | MR | Zbl
[8] L. Erd{ő}s, A. Knowles, H.-T. Yau, J. Yin, “The local semicircle law for a general class of random matrices”, Electron. J. Probab., 18 (2013), paper No 59, 58 pp. | DOI | MR | Zbl
[9] L. Erd{ő}s, A. Knowles, H.-T. Yau, J. Yin, “Spectral statistics of Erdös–Rényi graphs I: Local semicircle law”, Ann. Probab., 41:3B (2013), 2279–2375 | DOI | MR | Zbl
[10] L. Erd{ő}s, B. Schlein, H.-T. Yau, “Local semicircle law and complete delocalization for Wigner random matrices”, Comm. Math. Phys., 287:2 (2009), 641–655 | DOI | MR | Zbl
[11] L. Erd{ő}s, B. Schlein, H.-T. Yau, “Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices”, Ann. Probab., 37:3 (2009), 815–852 | DOI | MR | Zbl
[12] L. Erd{ő}s, B. Schlein, H.-T. Yau, “Wegner estimate and level repulsion for Wigner random matrices”, Int. Math. Res. Not. IMRN, 2010:3 (2010), 436–479 | DOI | MR | Zbl
[13] E. Giné, R. Latała, J. Zinn, “Exponential and moment inequalities for $U$-statistics”, High dimensional probability (Seattle, WA, 1999), v. II, Progr. Probab., 47, Birkhäuser Boston, Boston, MA, 2000, 13–38 | MR | Zbl
[14] V. L. Girko, Theory of random determinants, Math. Appl. (Soviet Ser.), 45, Kluwer Acad. Publ., Dordrecht, 1988, xxv+677 pp. | MR | Zbl | Zbl
[15] V. L. Girko, “Spectral theory of random matrices”, Russian Math. Surveys, 40:1 (1985), 77–120 | DOI | MR | Zbl
[16] F. Götze, A. A. Naumov, A. N. Tikhomirov, “Limit theorems for two classes of random matrices with dependent entries”, Theory Probab. Appl., 59:1 (2015), 23–39 | DOI | DOI | Zbl
[17] F. Götze, A. Naumov, A. Tikhomirov, Local semicircle law under moment conditions. Part I: The Stieltjes transform, arXiv: 1510.07350
[18] F. Götze, A. Naumov, A. Tikhomirov, Local semicircle law under moment conditions. Part II: Localization and delocalization, arXiv: 1511.00862
[19] F. Götze, A. Tikhomirov, “Rate of convergence to the semi-circular law”, Probab. Theory Related Fields, 127:2 (2003), 228–276 | DOI | MR | Zbl
[20] F. Götze, A. Tikhomirov, On the rate of convergence to the semi-circular law, arXiv: 1109.0611
[21] F. Götze, A. Tikhomirov, Rate of convergence of the empirical spectral distribution function to the semi-circular law, arXiv: 1407.2780
[22] F. Götze, A. Tikhomirov, “Optimal bounds for convergence of expected spectral distributions to the semi-circular law”, Probab. Theory Related Fields, 165:1-2 (2016), 163–233 | DOI | Zbl
[23] J. Gustavsson, “Gaussian fluctuations of eigenvalues in the GUE”, Ann. Inst. H. Poincaré Probab. Statist., 41:2 (2005), 151–178 | DOI | MR | Zbl
[24] J. O. Lee, J. Yin, “A necessary and sufficient condition for edge universality of Wigner matrices”, Duke Math. J., 163:1 (2014), 117–173 | DOI | MR | Zbl
[25] A. A. Naumov, “Limit theorems for two classes of random matrices with Gaussian entries”, J. Math. Sci. (N. Y.), 204:1 (2015), 140–147 | DOI | MR | Zbl
[26] L. A. Pastur, “Spectra of random self adjoint operators”, Russian Math. Surveys, 28:1 (1973), 1–67 | DOI | MR | Zbl
[27] D. Shlyakhtenko, “Random Gaussian band matrices and freeness with amalgamation”, Internat. Math. Res. Notices, 1996:20 (1996), 1013–1025 | DOI | MR | Zbl
[28] Terence Tao, Van Vu, “Random matrices: the universality phenomenon for Wigner ensembles”, Modern aspects of random matrix theory, Proc. Sympos. Appl. Math., 72, Amer. Math. Soc., Providence, RI, 2014, 121–172 ; arXiv: 1202.0068 | DOI | MR | Zbl
[29] Terence Tao, Van Vu, “Random matrices: sharp concentration of eigenvalues”, Random Matrices Theory Appl., 2:3 (2013), 1350007, 31 pp. | DOI | MR | Zbl