Limit theorems for generalized renewal processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 44-67
Voir la notice de l'article provenant de la source Math-Net.Ru
The main aim of the present paper is the investigation of the asymptotic behavior of delayed periodic renewal processes. Strong law of large numbers (SLLN), central limit theorem (CLT), and functional limit theorem (FLT) are established for such processes. Application of the obtained results in the inventory theory is also considered.
Keywords:
generalized renewal processes, strong law of large numbers, central limit theorem, functional limit theorem, reward-renewal processes, inventory models.
@article{TVP_2017_62_1_a3,
author = {E. V. Bulinskaya and A. I. Sokolova},
title = {Limit theorems for generalized renewal processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {44--67},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a3/}
}
E. V. Bulinskaya; A. I. Sokolova. Limit theorems for generalized renewal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 44-67. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a3/