Limit theorems for generalized renewal processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 44-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main aim of the present paper is the investigation of the asymptotic behavior of delayed periodic renewal processes. Strong law of large numbers (SLLN), central limit theorem (CLT), and functional limit theorem (FLT) are established for such processes. Application of the obtained results in the inventory theory is also considered.
Keywords: generalized renewal processes, strong law of large numbers, central limit theorem, functional limit theorem, reward-renewal processes, inventory models.
@article{TVP_2017_62_1_a3,
     author = {E. V. Bulinskaya and A. I. Sokolova},
     title = {Limit theorems for generalized renewal processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {44--67},
     year = {2017},
     volume = {62},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a3/}
}
TY  - JOUR
AU  - E. V. Bulinskaya
AU  - A. I. Sokolova
TI  - Limit theorems for generalized renewal processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 44
EP  - 67
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a3/
LA  - ru
ID  - TVP_2017_62_1_a3
ER  - 
%0 Journal Article
%A E. V. Bulinskaya
%A A. I. Sokolova
%T Limit theorems for generalized renewal processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 44-67
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a3/
%G ru
%F TVP_2017_62_1_a3
E. V. Bulinskaya; A. I. Sokolova. Limit theorems for generalized renewal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 44-67. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a3/

[1] L. G. Afanaseva, E. V. Bulinskaya, Sluchainye protsessy v teorii massovogo obsluzhivaniya i upravleniya zapasami, Izd-vo MGU, M., 1980, 110 pp. | Zbl

[2] K. J. Arrow, T. Harris, J. Marschak, “Optimal inventory policy”, Econometrica, 19:3 (1951), 250–272 | DOI | MR | Zbl

[3] K. J. Arrow, S. Karlin, H. Scarf, Studies in the mathematical theory of inventory and production, Stanford Mathematical Studies in the Social Sciences, 1, Stanford Univ. Press, Stanford, CA, 1958, xi+340 pp. | MR | Zbl

[4] S. Asmussen, Applied probability and queues, Appl. Math. (N. Y.), 51, 2nd ed., Springer-Verlag, New York, 2003, xii+438 pp. | MR | Zbl

[5] R. Bellman, I. Glicksberg, O. Gross, “On the optimal inventory equation”, Management Sci., 2:1 (1955), 83–104 | DOI | MR | Zbl

[6] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl

[7] A. A. Borovkov, Probability theory, Universitext, Springer, London, 2013, xxviii+733 pp. | DOI | MR | MR | Zbl | Zbl

[8] E. V. Bulinskaya, “On the mean number of crossings of a level by a stationary gaussian process”, Theory Probab. Appl., 6:4 (1961), 435–438 | DOI

[9] E. V. Bulinskaya, “Some results concerning optimum inventory policies”, Theory Probab. Appl., 9:3 (1964), 389–403 | DOI | MR | Zbl

[10] E. V. Bulinskaya, “O stoimostnom podkhode v strakhovanii”, Obozrenie prikladnoi i promyshlennoi matematiki, 10:2 (2003), 276–286 | Zbl

[11] E. Bulinskaya, “Optimal and asymptotically optimal control for some inventory models”, Prokhorov and contemporary probability theory, Springer Proc. Math. Stat., 33, Springer, Heidelberg, 2012, 141–162 | DOI | MR | Zbl

[12] E. Bulinskaya, L. Afanasyeva, “Multi-supplier systems with seasonal demand”, Advances in production management systems. New challenges, new approaches (Bordeaux, 2009), IFIP Adv. Inf. Commun. Technol., 338, Springer, Berlin, 2010, 267–274 | DOI

[13] E. V. Bulinskaya, K. D. Shakhgildyan, “Sistemy upravleniya zapasami s ogranicheniyami”, Sovremennye problemy matematiki i mekhaniki, 8, no. 3, Izd-vo Mosk. un-ta, M., 2013, 19–30

[14] E. V. Bulinskaya, A. I. Sokolova, “Asimptoticheskoe povedenie nekotorykh stokhasticheskikh sistem khraneniya”, Sovremennye problemy matematiki i mekhaniki, 10, no. 3, Izd-vo Mosk. un-ta, M., 2015, 37–62

[15] D. R. Cox, Renewal theory, Methuen Co. Ltd., London; John Wiley Sons, Inc., New York, 1962, ix+142 pp. | MR | MR | Zbl | Zbl

[16] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Appl. Math. (N. Y.), 33, Springer-Verlag, Berlin, 1997, xvi+645 pp. | DOI | MR | Zbl

[17] W. Feller, “On the integral equation of renewal theory”, Ann. Math. Statist., 12:3 (1941), 243–267 | DOI | MR | Zbl

[18] W. Feller, “Fluctuation theory of recurrent events”, Trans. Amer. Math. Soc., 67 (1949), 98–119 | DOI | MR | Zbl

[19] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl

[20] V. Yu. Korolev, V. Bening, S. Shorgin, Matematicheskie osnovy teorii riska, Fizmatlit, M., 2007, 544 pp. | Zbl

[21] K. V. Mitov, E. Omey, Renewal processes, Springer Briefs in Statistics, Springer, Cham, 2014, viii+122 pp. | DOI | MR | Zbl

[22] Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, Theory Probab. Appl., 1:2 (1956), 157–214 | DOI | MR | Zbl

[23] W. L. Smith, “Renewal theory and its ramifications”, J. Roy. Statist. Soc. Ser. B, 20:2 (1958), 243–302 | MR | Zbl

[24] W. L. Smith, “On the cumulants of renewal processes”, Biometrika, 46:1-2 (1959), 1–29 | DOI | MR | Zbl

[25] I. I. Vainshtein, G. E. Mikhalchenko, V. I. Vainshtein, “Asimptotika raspredeleniya chisla vosstanovlenii v protsesse vosstanovleniya poryadka $(k_1,k_2)$”, Vestn. Sib. gos. aerokosm. un-ta im. M. F. Reshetneva, 2012, no. 2(42), 16–18

[26] N. M. Zinchenko, “Strong limit theorems for the risk process with stochastic premiums”, Markov Process. Related Fields, 20:3 (2014), 527–544 | MR | Zbl