Distances between stationary distributions of diffusions and solvability of nonlinear Fokker--Planck--Kolmogorov equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 16-43

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with investigation of stationary distributions of diffusion processes. We obtain estimates for the Kantorovich, Prohorov, and total variation distances between stationary distributions of diffusions with different diffusion matrices and different drift coefficients. Applications are given to nonlinear stationary Fokker–Planck–Kolmogorov equations, for which new conditions for the existence and uniqueness of probability solutions are found; moreover, these conditions are optimal in a sense.
Keywords: stationary Fokker–Planck–Kolmogorov equation, Kantorovich metric, Prohorov metric, nonlinear Fokker–Planck–Kolmogorov equation.
Mots-clés : total variation distance
@article{TVP_2017_62_1_a2,
     author = {V. I. Bogachev and A. I. Kirillov and S. V. Shaposhnikov},
     title = {Distances between stationary distributions of diffusions and solvability of nonlinear {Fokker--Planck--Kolmogorov} equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {16--43},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - A. I. Kirillov
AU  - S. V. Shaposhnikov
TI  - Distances between stationary distributions of diffusions and solvability of nonlinear Fokker--Planck--Kolmogorov equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 16
EP  - 43
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/
LA  - ru
ID  - TVP_2017_62_1_a2
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A A. I. Kirillov
%A S. V. Shaposhnikov
%T Distances between stationary distributions of diffusions and solvability of nonlinear Fokker--Planck--Kolmogorov equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 16-43
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/
%G ru
%F TVP_2017_62_1_a2
V. I. Bogachev; A. I. Kirillov; S. V. Shaposhnikov. Distances between stationary distributions of diffusions and solvability of nonlinear Fokker--Planck--Kolmogorov equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 16-43. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/