Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 16-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with investigation of stationary distributions of diffusion processes. We obtain estimates for the Kantorovich, Prohorov, and total variation distances between stationary distributions of diffusions with different diffusion matrices and different drift coefficients. Applications are given to nonlinear stationary Fokker–Planck–Kolmogorov equations, for which new conditions for the existence and uniqueness of probability solutions are found; moreover, these conditions are optimal in a sense.
Keywords: stationary Fokker–Planck–Kolmogorov equation, Kantorovich metric, Prohorov metric, nonlinear Fokker–Planck–Kolmogorov equation.
Mots-clés : total variation distance
@article{TVP_2017_62_1_a2,
     author = {V. I. Bogachev and A. I. Kirillov and S. V. Shaposhnikov},
     title = {Distances between stationary distributions of diffusions and solvability of nonlinear {Fokker{\textendash}Planck{\textendash}Kolmogorov} equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {16--43},
     year = {2017},
     volume = {62},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - A. I. Kirillov
AU  - S. V. Shaposhnikov
TI  - Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 16
EP  - 43
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/
LA  - ru
ID  - TVP_2017_62_1_a2
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A A. I. Kirillov
%A S. V. Shaposhnikov
%T Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 16-43
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/
%G ru
%F TVP_2017_62_1_a2
V. I. Bogachev; A. I. Kirillov; S. V. Shaposhnikov. Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 16-43. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/

[1] V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker–Planck–Kolmogorov equations”, Math. Notes, 96:5-6 (2014), 855–863 | DOI | MR | Zbl

[2] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Math. Surveys Monogr., 207, Amer. Math. Soc., Providence, RI, 2015, xii+479 pp. | DOI | MR | Zbl

[3] N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1981, xvi+464 pp. | MR | MR | Zbl | Zbl

[4] L. Kantorovitch, “On the translocation of masses”, C. R. (Doklady) Acad. Sci. URSS (N. S.), 37 (1942), 199–201 | MR | Zbl

[5] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | DOI | MR | Zbl

[6] V. I. Bogachev, Measure theory, v. I, II, Springer, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl

[7] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | MR | Zbl

[8] R. Fortet, E. Mourier, “Convergence de la répartition empirique vers la répartition théorique”, Ann. Sci. École Norm. Sup. (3), 70 (1953), 267–285 | MR | Zbl

[9] L. V. Kantorovich, G. Sh. Rubinshtein, “Ob odnom prostranstve vpolne additivnykh funktsii mnozhestva”, Vestn. LGU, 13:7 (1958), 52–59 | MR | Zbl

[10] Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, Theory Probab. Appl., 1:2 (1956), 157–214 | DOI | MR | Zbl

[11] V. I. Bogachev, N. V. Krylov, M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11-12 (2001), 2037–2080 | DOI | MR | Zbl

[12] A. Porretta, E. Priola, “Global Lipschitz regularizing effects for linear and nonlinear parabolic equations”, J. Math. Pures Appl. (9), 100:5 (2013), 633–686 | DOI | MR | Zbl

[13] V. I. Bogachev, M. Röckner, “A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts”, Theory Probab. Appl., 45:3 (2001), 363–378 | DOI | DOI | MR | Zbl

[14] V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “On probability and integrable solutions to the stationary Kolmogorov equation”, Dokl. Math., 83:3 (2011), 309–313 | DOI | MR | Zbl

[15] V. I. Bogachev, M. Röckner, W. Stannat, “Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions”, Sb. Math., 193:7 (2002), 945–976 | DOI | DOI | MR | Zbl

[16] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On uniqueness problems related to elliptic equations for measures”, J. Math. Sci. (N. Y.), 176:6 (2011), 759–773 | DOI | MR | Zbl

[17] S. V. Shaposhnikov, “On nonuniqueness of solutions to elliptic equations for probability measures”, J. Funct. Anal., 254:10 (2008), 2690–2705 | DOI | MR | Zbl

[18] G. Metafune, D. Pallara, A. Rhandi, “Global properties of invariant measures”, J. Funct. Anal., 223:2 (2005), 396–424 | DOI | MR | Zbl

[19] V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic equations for measures: regularity and global bounds of densities”, J. Math. Pures Appl. (9), 85:6 (2006), 743–757 | DOI | MR | Zbl

[20] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Estimates of densities of stationary distributions and transition probabilities of diffusion processes”, Theory Probab. Appl., 52:2 (2008), 209–236 | DOI | DOI | MR | Zbl

[21] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Lower estimates of densities of solutions of elliptic equations for measures”, Dokl. Math., 79:3 (2009), 329–334 | DOI | MR | Zbl

[22] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl

[23] N. V. Krylov, E. Priola, “Elliptic and parabolic second-order PDEs with growing coefficients”, Comm. Partial Differential Equations, 35:1 (2010), 1–22 | DOI | MR | Zbl

[24] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat. (50), North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp. | MR | Zbl

[25] E. Pardoux , A. Yu. Veretennikov, “On the Poisson equation and diffusion approximation. I”, Ann. Probab., 29:3 (2001), 1061–1085 | DOI | MR | Zbl

[26] T. D. Frank, Nonlinear Fokker–Planck equations. Fundamentals and applications, Springer Ser. Synergetics, Springer-Verlag, Berlin, 2005, xii+404 pp. | DOI | MR | Zbl

[27] N. U. Ahmed, X. Ding, “On invariant measures of nonlinear Markov processes”, J. Appl. Math. Stochastic Anal., 6:4 (1993), 385–406 | DOI | MR | Zbl

[28] S. Benachour, B. Roynette, D. Talay, P. Vallois, “Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos”, Stochastic Process. Appl., 75:2 (1998), 173–201 | DOI | MR | Zbl

[29] A. Yu. Veretennikov, “On ergodic measures for McKean–Vlasov stochastic equations”, Monte Carlo and quasi-Monte Carlo methods 2004, Springer, Berlin, 2006, 471–486 | DOI | MR | Zbl

[30] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Russian Math. Surveys, 63:4 (2008), 691–726 | DOI | DOI | MR | Zbl

[31] L. G. Tonoyan, “Nonlinear elliptic equations for measures”, Dokl. Math., 84:1 (2011), 558–561 | DOI | MR | Zbl

[32] O. A. Butkovsky, “On ergodic properties of nonlinear Markov chains and stochastic McKean–Vlasov equations”, Theory Probab. Appl., 58:4 (2014), 661–674 | DOI | DOI | Zbl

[33] T. D. Frank, “Stability analysis of mean field models described by Fokker–Planck equations”, Ann. Phys., 11:10-11 (2002), 707–716 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[34] Y. Kuramoto, Chemical oscillations, waves, and turbulence, Springer Ser. Synergetics, 19, Springer-Verlag, Berlin, 1984, viii+156 pp. | DOI | MR | Zbl

[35] M. S. Ribeiro, F. D. Nobre, E. M. F. Curado, “Classes of $N$-dimensional nonlinear Fokker–Planck equations associated to Tsallis entropy”, Entropy, 13:11 (2011), 1928–1944 | DOI | MR | Zbl

[36] J. A. Carrillo, Ph. Laurençot, J. Rosado, “Fermi–Dirac–Fokker–Planck equation: well-posedness long-time asymptotics”, J. Differential Equations, 247:8 (2009), 2209–2234 | DOI | MR | Zbl

[37] J. A. Cañizo, J. A. Carrillo, Ph. Laurençot, J. Rosado, “The Fokker–Planck equation for bosons in 2D: well-posedness and asymptotic behavior”, Nonlinear Anal., 137 (2016), 291–305 | DOI | MR | Zbl

[38] V. I. Bogachev, M. Röckner, F.-Y. Wang, “Elliptic equations for invariant measures on finite and infinite dimensional manifolds”, J. Math. Pures Appl. (9), 80:2 (2001), 177–221 | DOI | MR | Zbl