Mots-clés : total variation distance
@article{TVP_2017_62_1_a2,
author = {V. I. Bogachev and A. I. Kirillov and S. V. Shaposhnikov},
title = {Distances between stationary distributions of diffusions and solvability of nonlinear {Fokker{\textendash}Planck{\textendash}Kolmogorov} equations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {16--43},
year = {2017},
volume = {62},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/}
}
TY - JOUR AU - V. I. Bogachev AU - A. I. Kirillov AU - S. V. Shaposhnikov TI - Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 16 EP - 43 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/ LA - ru ID - TVP_2017_62_1_a2 ER -
%0 Journal Article %A V. I. Bogachev %A A. I. Kirillov %A S. V. Shaposhnikov %T Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 16-43 %V 62 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/ %G ru %F TVP_2017_62_1_a2
V. I. Bogachev; A. I. Kirillov; S. V. Shaposhnikov. Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 16-43. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a2/
[1] V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker–Planck–Kolmogorov equations”, Math. Notes, 96:5-6 (2014), 855–863 | DOI | MR | Zbl
[2] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Math. Surveys Monogr., 207, Amer. Math. Soc., Providence, RI, 2015, xii+479 pp. | DOI | MR | Zbl
[3] N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1981, xvi+464 pp. | MR | MR | Zbl | Zbl
[4] L. Kantorovitch, “On the translocation of masses”, C. R. (Doklady) Acad. Sci. URSS (N. S.), 37 (1942), 199–201 | MR | Zbl
[5] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | DOI | MR | Zbl
[6] V. I. Bogachev, Measure theory, v. I, II, Springer, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl
[7] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | MR | Zbl
[8] R. Fortet, E. Mourier, “Convergence de la répartition empirique vers la répartition théorique”, Ann. Sci. École Norm. Sup. (3), 70 (1953), 267–285 | MR | Zbl
[9] L. V. Kantorovich, G. Sh. Rubinshtein, “Ob odnom prostranstve vpolne additivnykh funktsii mnozhestva”, Vestn. LGU, 13:7 (1958), 52–59 | MR | Zbl
[10] Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, Theory Probab. Appl., 1:2 (1956), 157–214 | DOI | MR | Zbl
[11] V. I. Bogachev, N. V. Krylov, M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11-12 (2001), 2037–2080 | DOI | MR | Zbl
[12] A. Porretta, E. Priola, “Global Lipschitz regularizing effects for linear and nonlinear parabolic equations”, J. Math. Pures Appl. (9), 100:5 (2013), 633–686 | DOI | MR | Zbl
[13] V. I. Bogachev, M. Röckner, “A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts”, Theory Probab. Appl., 45:3 (2001), 363–378 | DOI | DOI | MR | Zbl
[14] V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “On probability and integrable solutions to the stationary Kolmogorov equation”, Dokl. Math., 83:3 (2011), 309–313 | DOI | MR | Zbl
[15] V. I. Bogachev, M. Röckner, W. Stannat, “Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions”, Sb. Math., 193:7 (2002), 945–976 | DOI | DOI | MR | Zbl
[16] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On uniqueness problems related to elliptic equations for measures”, J. Math. Sci. (N. Y.), 176:6 (2011), 759–773 | DOI | MR | Zbl
[17] S. V. Shaposhnikov, “On nonuniqueness of solutions to elliptic equations for probability measures”, J. Funct. Anal., 254:10 (2008), 2690–2705 | DOI | MR | Zbl
[18] G. Metafune, D. Pallara, A. Rhandi, “Global properties of invariant measures”, J. Funct. Anal., 223:2 (2005), 396–424 | DOI | MR | Zbl
[19] V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic equations for measures: regularity and global bounds of densities”, J. Math. Pures Appl. (9), 85:6 (2006), 743–757 | DOI | MR | Zbl
[20] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Estimates of densities of stationary distributions and transition probabilities of diffusion processes”, Theory Probab. Appl., 52:2 (2008), 209–236 | DOI | DOI | MR | Zbl
[21] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Lower estimates of densities of solutions of elliptic equations for measures”, Dokl. Math., 79:3 (2009), 329–334 | DOI | MR | Zbl
[22] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl
[23] N. V. Krylov, E. Priola, “Elliptic and parabolic second-order PDEs with growing coefficients”, Comm. Partial Differential Equations, 35:1 (2010), 1–22 | DOI | MR | Zbl
[24] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat. (50), North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp. | MR | Zbl
[25] E. Pardoux , A. Yu. Veretennikov, “On the Poisson equation and diffusion approximation. I”, Ann. Probab., 29:3 (2001), 1061–1085 | DOI | MR | Zbl
[26] T. D. Frank, Nonlinear Fokker–Planck equations. Fundamentals and applications, Springer Ser. Synergetics, Springer-Verlag, Berlin, 2005, xii+404 pp. | DOI | MR | Zbl
[27] N. U. Ahmed, X. Ding, “On invariant measures of nonlinear Markov processes”, J. Appl. Math. Stochastic Anal., 6:4 (1993), 385–406 | DOI | MR | Zbl
[28] S. Benachour, B. Roynette, D. Talay, P. Vallois, “Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos”, Stochastic Process. Appl., 75:2 (1998), 173–201 | DOI | MR | Zbl
[29] A. Yu. Veretennikov, “On ergodic measures for McKean–Vlasov stochastic equations”, Monte Carlo and quasi-Monte Carlo methods 2004, Springer, Berlin, 2006, 471–486 | DOI | MR | Zbl
[30] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Russian Math. Surveys, 63:4 (2008), 691–726 | DOI | DOI | MR | Zbl
[31] L. G. Tonoyan, “Nonlinear elliptic equations for measures”, Dokl. Math., 84:1 (2011), 558–561 | DOI | MR | Zbl
[32] O. A. Butkovsky, “On ergodic properties of nonlinear Markov chains and stochastic McKean–Vlasov equations”, Theory Probab. Appl., 58:4 (2014), 661–674 | DOI | DOI | Zbl
[33] T. D. Frank, “Stability analysis of mean field models described by Fokker–Planck equations”, Ann. Phys., 11:10-11 (2002), 707–716 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[34] Y. Kuramoto, Chemical oscillations, waves, and turbulence, Springer Ser. Synergetics, 19, Springer-Verlag, Berlin, 1984, viii+156 pp. | DOI | MR | Zbl
[35] M. S. Ribeiro, F. D. Nobre, E. M. F. Curado, “Classes of $N$-dimensional nonlinear Fokker–Planck equations associated to Tsallis entropy”, Entropy, 13:11 (2011), 1928–1944 | DOI | MR | Zbl
[36] J. A. Carrillo, Ph. Laurençot, J. Rosado, “Fermi–Dirac–Fokker–Planck equation: well-posedness long-time asymptotics”, J. Differential Equations, 247:8 (2009), 2209–2234 | DOI | MR | Zbl
[37] J. A. Cañizo, J. A. Carrillo, Ph. Laurençot, J. Rosado, “The Fokker–Planck equation for bosons in 2D: well-posedness and asymptotic behavior”, Nonlinear Anal., 137 (2016), 291–305 | DOI | MR | Zbl
[38] V. I. Bogachev, M. Röckner, F.-Y. Wang, “Elliptic equations for invariant measures on finite and infinite dimensional manifolds”, J. Math. Pures Appl. (9), 80:2 (2001), 177–221 | DOI | MR | Zbl