Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 194-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\lambda$ be the LR criterion for testing an additional information hypothesis on a subvector of $p$-variate random vector ${x}$ and a subvector of $q$-variate random vector ${y}$, based on a sample of size $N=n+1$. Using the fact that the null distribution of $-(2/N)\log \lambda$ can be expressed as a product of two independent $\Lambda$ distributions, we first derive an asymptotic expansion as well as the limiting distribution of the standardized statistic $T$ of $-(2/N)\log \lambda$ under a high-dimensional framework when the sample size and the dimensions are large. Next, we derive computable error bounds for the high-dimensional approximations. Through numerical experiments it is noted that our error bounds are useful in a wide range of $p$, $q$, and $n$.
Keywords: error bounds, asymptotic expansions, high-dimensional data, redundancy, canonical correlation analysis.
@article{TVP_2017_62_1_a10,
     author = {H. Wakaki and Y. Fujikoshi},
     title = {Computable error bounds for high-dimensional approximations of an {LR} statistic for additional information in canonical correlation analysis},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {194--211},
     year = {2017},
     volume = {62},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/}
}
TY  - JOUR
AU  - H. Wakaki
AU  - Y. Fujikoshi
TI  - Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 194
EP  - 211
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/
LA  - en
ID  - TVP_2017_62_1_a10
ER  - 
%0 Journal Article
%A H. Wakaki
%A Y. Fujikoshi
%T Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 194-211
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/
%G en
%F TVP_2017_62_1_a10
H. Wakaki; Y. Fujikoshi. Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 194-211. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/

[1] T. Akita, Jinghua Jin, H. Wakaki, “High-dimensional Edgeworth expansion of a test statistic on independence and its error bound”, J. Multivariate Anal., 101:8 (2010), 1806–1813 | DOI | MR | Zbl

[2] T. W. Anderson, An introduction to multivariate statistical analysis, Wiley Ser. Probab. Stat., 3rd ed., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2003, xx+721 pp. | MR | Zbl

[3] G. E. P. Box, “A general distribution theory for a class of likelihood criteria”, Biometrika, 36:3-4 (1949), 317–346 | DOI | MR | Zbl

[4] G. S. Mudholkar, M. C. Trivedi, “A normal approximation for the distribution of the likelihood ratio statistic in multivariate analysis of variance”, Biometrika, 67:2 (1980), 485–488 | DOI | MR | Zbl

[5] Ya. Fujikoshi, “A test for additional information in canonical correlation analysis”, Ann. Inst. Statist. Math., 34:3 (1982), 523–530 | DOI | MR | Zbl

[6] Ya. Fujikoshi, V. V. Ulyanov, R. Shimizu, Multivariate statistics. High-dimensional and large-sample approximations, Wiley Ser. Probab. Stat., John Wiley Sons, Inc., Hoboken, NJ, 2010, xviii+533 pp. | DOI | MR | Zbl

[7] R. J. Muirhead, Aspect of multivariate statistical theory, Wiley Ser. Probab. Stat., John Wiley Sons, Inc., New York, 1982, xix+673 pp. | MR | Zbl

[8] T. Sakurai, “Asymptotic expansions of test statistics for dimensionality and additional information in canonical correlation analysis when the dimension is large”, J. Multivariate Anal., 100:5 (2009), 888–901 | DOI | MR | Zbl

[9] T. Tonda, Ya. Fujikoshi, “Asymptotic expansion of the null distribution of LR statistic for multivariate linear hypothesis when the dimension is large”, Comm. Statist. Theory Methods, 33:5 (2004), 1205–1220 | DOI | MR | Zbl

[10] M. Siotani, T. Hayakawa, Ya. Fujikoshi, Modern multivariate statistical analysis: a graduate course and handbook, Amer. Sci. Press Ser. Math. Management Sci., 9, Amer. Sci. Press, Columbus, OH, 1985, xiv+759 pp. | MR | Zbl

[11] H. Wakaki, “Edgeworth expansion of Wilks' lambda statistic”, J. Multivariate Anal., 97:9 (2006), 1958–1964 | DOI | MR | Zbl

[12] H. Wakaki, An error bound for high-dimensional Edgeworth expansion of Wilks' lambda distribution, Hiroshima Statistical Research Group, Technical Report, No 07-03, 2007