Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 194-211

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\lambda$ be the LR criterion for testing an additional information hypothesis on a subvector of $p$-variate random vector ${x}$ and a subvector of $q$-variate random vector ${y}$, based on a sample of size $N=n+1$. Using the fact that the null distribution of $-(2/N)\log \lambda$ can be expressed as a product of two independent $\Lambda$ distributions, we first derive an asymptotic expansion as well as the limiting distribution of the standardized statistic $T$ of $-(2/N)\log \lambda$ under a high-dimensional framework when the sample size and the dimensions are large. Next, we derive computable error bounds for the high-dimensional approximations. Through numerical experiments it is noted that our error bounds are useful in a wide range of $p$, $q$, and $n$.
Keywords: error bounds, asymptotic expansions, high-dimensional data, redundancy, canonical correlation analysis.
@article{TVP_2017_62_1_a10,
     author = {H. Wakaki and Y. Fujikoshi},
     title = {Computable error bounds for high-dimensional approximations of an {LR} statistic for additional information in canonical correlation analysis},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {194--211},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/}
}
TY  - JOUR
AU  - H. Wakaki
AU  - Y. Fujikoshi
TI  - Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 194
EP  - 211
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/
LA  - en
ID  - TVP_2017_62_1_a10
ER  - 
%0 Journal Article
%A H. Wakaki
%A Y. Fujikoshi
%T Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 194-211
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/
%G en
%F TVP_2017_62_1_a10
H. Wakaki; Y. Fujikoshi. Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 194-211. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/