Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 194-211
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\lambda$ be the LR criterion for testing an additional information hypothesis on a subvector of $p$-variate random vector ${x}$ and a subvector of $q$-variate random vector ${y}$, based on a sample of size $N=n+1$. Using the fact that the null distribution of $-(2/N)\log \lambda$ can be expressed as a product of two independent $\Lambda$ distributions, we first derive an asymptotic expansion as well as the limiting distribution of the standardized statistic $T$ of $-(2/N)\log \lambda$ under a high-dimensional framework when the sample size and the dimensions are large. Next, we derive computable error bounds for the high-dimensional approximations. Through numerical experiments it is noted that our error bounds are useful in a wide range of $p$, $q$, and $n$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
error bounds, asymptotic expansions, high-dimensional data, redundancy, canonical correlation analysis.
                    
                    
                    
                  
                
                
                @article{TVP_2017_62_1_a10,
     author = {H. Wakaki and Y. Fujikoshi},
     title = {Computable error bounds for high-dimensional approximations of an {LR} statistic for additional information in canonical correlation analysis},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {194--211},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/}
}
                      
                      
                    TY - JOUR AU - H. Wakaki AU - Y. Fujikoshi TI - Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 194 EP - 211 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/ LA - en ID - TVP_2017_62_1_a10 ER -
%0 Journal Article %A H. Wakaki %A Y. Fujikoshi %T Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 194-211 %V 62 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/ %G en %F TVP_2017_62_1_a10
H. Wakaki; Y. Fujikoshi. Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 194-211. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/
