@article{TVP_2017_62_1_a10,
author = {H. Wakaki and Y. Fujikoshi},
title = {Computable error bounds for high-dimensional approximations of an {LR} statistic for additional information in canonical correlation analysis},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {194--211},
year = {2017},
volume = {62},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/}
}
TY - JOUR AU - H. Wakaki AU - Y. Fujikoshi TI - Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 194 EP - 211 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/ LA - en ID - TVP_2017_62_1_a10 ER -
%0 Journal Article %A H. Wakaki %A Y. Fujikoshi %T Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis %J Teoriâ veroâtnostej i ee primeneniâ %D 2017 %P 194-211 %V 62 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/ %G en %F TVP_2017_62_1_a10
H. Wakaki; Y. Fujikoshi. Computable error bounds for high-dimensional approximations of an LR statistic for additional information in canonical correlation analysis. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 1, pp. 194-211. http://geodesic.mathdoc.fr/item/TVP_2017_62_1_a10/
[1] T. Akita, Jinghua Jin, H. Wakaki, “High-dimensional Edgeworth expansion of a test statistic on independence and its error bound”, J. Multivariate Anal., 101:8 (2010), 1806–1813 | DOI | MR | Zbl
[2] T. W. Anderson, An introduction to multivariate statistical analysis, Wiley Ser. Probab. Stat., 3rd ed., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2003, xx+721 pp. | MR | Zbl
[3] G. E. P. Box, “A general distribution theory for a class of likelihood criteria”, Biometrika, 36:3-4 (1949), 317–346 | DOI | MR | Zbl
[4] G. S. Mudholkar, M. C. Trivedi, “A normal approximation for the distribution of the likelihood ratio statistic in multivariate analysis of variance”, Biometrika, 67:2 (1980), 485–488 | DOI | MR | Zbl
[5] Ya. Fujikoshi, “A test for additional information in canonical correlation analysis”, Ann. Inst. Statist. Math., 34:3 (1982), 523–530 | DOI | MR | Zbl
[6] Ya. Fujikoshi, V. V. Ulyanov, R. Shimizu, Multivariate statistics. High-dimensional and large-sample approximations, Wiley Ser. Probab. Stat., John Wiley Sons, Inc., Hoboken, NJ, 2010, xviii+533 pp. | DOI | MR | Zbl
[7] R. J. Muirhead, Aspect of multivariate statistical theory, Wiley Ser. Probab. Stat., John Wiley Sons, Inc., New York, 1982, xix+673 pp. | MR | Zbl
[8] T. Sakurai, “Asymptotic expansions of test statistics for dimensionality and additional information in canonical correlation analysis when the dimension is large”, J. Multivariate Anal., 100:5 (2009), 888–901 | DOI | MR | Zbl
[9] T. Tonda, Ya. Fujikoshi, “Asymptotic expansion of the null distribution of LR statistic for multivariate linear hypothesis when the dimension is large”, Comm. Statist. Theory Methods, 33:5 (2004), 1205–1220 | DOI | MR | Zbl
[10] M. Siotani, T. Hayakawa, Ya. Fujikoshi, Modern multivariate statistical analysis: a graduate course and handbook, Amer. Sci. Press Ser. Math. Management Sci., 9, Amer. Sci. Press, Columbus, OH, 1985, xiv+759 pp. | MR | Zbl
[11] H. Wakaki, “Edgeworth expansion of Wilks' lambda statistic”, J. Multivariate Anal., 97:9 (2006), 1958–1964 | DOI | MR | Zbl
[12] H. Wakaki, An error bound for high-dimensional Edgeworth expansion of Wilks' lambda distribution, Hiroshima Statistical Research Group, Technical Report, No 07-03, 2007