On a characterization of Gaussian transition operators
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 830-837 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we give a detailed proof of the characterization of the Gaussian Markov operators mapping a set of Gaussian probability measures into itself. We also characterize the integral operators with Gaussian kernels that map the set of unnormalized Gaussian measures into itself.
Keywords: Markov operator (transition operator), Gaussian measure.
Mots-clés : Gaussian kernel
@article{TVP_2016_61_4_a9,
     author = {A. S. Holevo},
     title = {On a characterization of {Gaussian} transition operators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {830--837},
     year = {2016},
     volume = {61},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a9/}
}
TY  - JOUR
AU  - A. S. Holevo
TI  - On a characterization of Gaussian transition operators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 830
EP  - 837
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a9/
LA  - ru
ID  - TVP_2016_61_4_a9
ER  - 
%0 Journal Article
%A A. S. Holevo
%T On a characterization of Gaussian transition operators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 830-837
%V 61
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a9/
%G ru
%F TVP_2016_61_4_a9
A. S. Holevo. On a characterization of Gaussian transition operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 830-837. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a9/

[1] Parthasarathy K. R., “The symmetry group of Gaussian states in $L^{2}({\mathbb R}^{n})$”, Prokhorov and Contemporary Probability, 2013, 349–369, Berlin, Springer | DOI | MR | Zbl

[2] De Palma G., Mari A., Giovannetti V., Holevo A. S., “Normal form decomposition for Gaussian-to-Gaussian superoperators”, J. Math. Phys., 56 (2015), 19 p. | DOI | MR | Zbl

[3] Lieb E. H., “Gaussian kernels have only Gaussian maximizers”, Invent. Math., 102 (1990), 179–208 | DOI | MR | Zbl