On a characterization of Gaussian transition operators
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 830-837
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we give a detailed proof of the characterization of the Gaussian Markov operators mapping a set of Gaussian probability measures into itself. We also characterize the integral operators with Gaussian kernels that map the set of unnormalized Gaussian measures into itself.
Keywords:
Markov operator (transition operator), Gaussian measure.
Mots-clés : Gaussian kernel
Mots-clés : Gaussian kernel
@article{TVP_2016_61_4_a9,
author = {A. S. Holevo},
title = {On a characterization of {Gaussian} transition operators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {830--837},
year = {2016},
volume = {61},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a9/}
}
A. S. Holevo. On a characterization of Gaussian transition operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 830-837. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a9/
[1] Parthasarathy K. R., “The symmetry group of Gaussian states in $L^{2}({\mathbb R}^{n})$”, Prokhorov and Contemporary Probability, 2013, 349–369, Berlin, Springer | DOI | MR | Zbl
[2] De Palma G., Mari A., Giovannetti V., Holevo A. S., “Normal form decomposition for Gaussian-to-Gaussian superoperators”, J. Math. Phys., 56 (2015), 19 p. | DOI | MR | Zbl
[3] Lieb E. H., “Gaussian kernels have only Gaussian maximizers”, Invent. Math., 102 (1990), 179–208 | DOI | MR | Zbl