Ergodic and statistical properties of $\mathscr{B}$-free numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 805-829 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this survey, we outline several results on the distribution of $B$-free integers and explore a random process naturally associated to them. We show how, notwithstanding the rigid ergodic properties of this process (zero entropy, pure point spectrum, no weak mixing), it exhibits a central limit theorem resembling a theorem by Beck on the circle rotation by a quadratic surd. We explain the connection of the random process to the distribution of $B$-free integers in short intervals, with particular emphasis on their variance and higher moments.
Keywords: $B$-free integers, entropy, correlation functions, central limit theorem.
Mots-clés : Möbius function
@article{TVP_2016_61_4_a8,
     author = {M. Avdeeva and F. Cellarosi and Ya. G. Sinai},
     title = {Ergodic and statistical properties of $\mathscr{B}$-free numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {805--829},
     year = {2016},
     volume = {61},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a8/}
}
TY  - JOUR
AU  - M. Avdeeva
AU  - F. Cellarosi
AU  - Ya. G. Sinai
TI  - Ergodic and statistical properties of $\mathscr{B}$-free numbers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 805
EP  - 829
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a8/
LA  - en
ID  - TVP_2016_61_4_a8
ER  - 
%0 Journal Article
%A M. Avdeeva
%A F. Cellarosi
%A Ya. G. Sinai
%T Ergodic and statistical properties of $\mathscr{B}$-free numbers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 805-829
%V 61
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a8/
%G en
%F TVP_2016_61_4_a8
M. Avdeeva; F. Cellarosi; Ya. G. Sinai. Ergodic and statistical properties of $\mathscr{B}$-free numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 805-829. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a8/

[1] Avdeeva M., “A central limit theorem for $B$-free integers” (to appear)

[2] Avdeeva M., Variance of $B$-free integers in short intervals, arXiv: 1512.00149

[3] Baake M., Moody R. V., Pleasants P. A. B., “Diffraction from visible lattice points and $k$th power free integers”, Discrete Math., 221:1–3 (2000), 3–42 | DOI | MR | Zbl

[4] Bartnicka A., Kasjan S., Kułaga-Przymus J., Lemańczyk M., $B$-free sets and dynamics, arXiv: 1509.08010

[5] Bartnicka A., Kułaga-Przymus J., $B$-free integers in number fields and dynamics, arXiv: 1507.00855

[6] Beck J., “Randomness of the square root of 2 and the giant leap. Part 1”, Periodica Mathematica Hungarica, 60:2 (2010), 137–242 | DOI | MR | Zbl

[7] Beck J., “Randomness of the square root of 2 and the giant leap. Part 2”, Periodica Mathematica Hungarica, 62:2 (2011), 127–246 | DOI | MR | Zbl

[8] Besicovitch A. S., “On the density of certain sequences of integers”, Mathematische Annalen, 110:1 (1935), 336–341 | DOI | MR

[9] Bourgain J., Sarnak P., Ziegler T., “Disjointness of Moebius from horocycle flows”, From Fourier analysis and number theory to radon transforms and geometry, Springer, 2013, 67–83 | DOI | MR | Zbl

[10] Burton R., Denker M., “On the central limit theorem for dynamical systems”, Trans. Amer. Math. Soc., 302:2 (1987), 715–726 | DOI | MR | Zbl

[11] Cellarosi F., Sinai Ya. G., “Ergodic properties of square-free numbers”, J. Eur. Math. Soc.(JEMS), 15:4 (2013), 1343–1374 | DOI | MR | Zbl

[12] Cellarosi F., Vinogradov I., “Ergodic properties of square-free integers in number fields”, J. Modern Dynamics, 7:3 (2014), 461–488 | MR

[13] Davenport H., Erd{ő}s P., “On sequences of positive integers”, Acta Arithm., 1937, 147–151

[14] Davenport H., Erd{ő}s P., “On sequences of positive integers”, J. Indian Math. Soc.(N.S.), 15 (1951), 19–24 | MR | Zbl

[15] Deléglise M., “Bounds for the density of abundant integers”, Experiment. Math., 7:2 (1998), 137–143 | DOI | MR | Zbl

[16] Duy T. K., Takanobu S., “On the distribution of $k$th power free integers, II”, Osaka J. Mathematics, 50:3 (2013), 687–713 | MR | Zbl

[17] El Abdalaoui E. H., Ye X., A cubic nonconventional ergodic average with Möbius and Liouville weight, 2015, arXiv: 1504.00950

[18] El Abdalaoui E. H., Kułaga-Przymus J., Lemańczyk M., de la Rue T., “The Chowla and the Sarnak conjectures from ergodic theory point of view”, arXiv: 1410.1673

[19] El Abdalaoui E.H., Lemańczyk M., de la Rue T., Automorphisms with quasi-discrete spectrum, multiplicative functions, and average orthogonality along short intervals, arXiv: 1507.04132

[20] El Abdalaoui E. H., Lemańczyk M., de la Rue T., “A dynamical point of view on the Set of $B$-free integers”, International Math. Res. Notices, 2015, no. 16, 7258–7286 | DOI | MR | Zbl

[21] Erdős P., “On the difference of consecutive terms of sequences defined by divisibility properties”, Acta Arithmetica, 12:2 (1966), 175–182 | MR | Zbl

[22] Ferenczi S., Kułaga-Przymus J., Lemańczyk M., Mauduit C., Substitutions and {M}öbius disjointness, arXiv: 1507.01123

[23] Ferenczi S., Mauduit C., “On Sarnak's conjecture and Veech's question for interval exchanges.”, J. Analyse Math. (to appear) | MR

[24] Filaseta M., Trifonov O., “On Gaps Between Squarefree Numbers II”, J. London Math. Soc., s2-45:2 (1992), 215–221 | DOI | MR | Zbl

[25] Granville A., “ABC allows us to count squarefrees”, International Math.Res.Notices, 1998, no. 19, 991–1009 | DOI | MR | Zbl

[26] Green B., Tao T., The Möbius function is strongly orthogonal to nilsequences, 2008, arXiv: 0807.1736 | MR

[27] Grimmett G., “Statistics of sieves and square-free numbers”, J.London Math.Soc., 43 (1991), 1–11 | DOI | MR | Zbl

[28] Hall R., “Squarefree numbers on short intervals”, Mathematika, 29:1 (1982), 7–17 | DOI | MR | Zbl

[29] Hall R., “The distribution of squarefree numbers”, J. Reine Angew. Math., 394 (1989), 107–117 | MR | Zbl

[30] Heath-Brown D. R., “The square sieve and consecutive square-free numbers”, Math. Ann., 266:3 (1984), 251–259 | DOI | MR | Zbl

[31] Kobayashi M., “A new series for the density of abundant numbers”, International J. Number Theory, 10:1 (2014), 73–84 | DOI | MR | Zbl

[32] Kułaga-Przymus J., Lemańczyk M., Weiss B., “On invariant measures for $B$-free systems”, Proc. London Math. Soc., 110, no. 6, Oxford Univ. Press, 2015, 1435–1474 | DOI | MR

[33] Levin M. B., Merzbach E., “Central limit theorems for the ergodic adding machine”, Israel J. Mathematics, 134:1 (2003), 61–92 | DOI | MR | Zbl

[34] Liu J., Sarnak P., “The Möbius function and distal flows”, Duke Math. J., 164:7 (2015), 1353–1399 | DOI | MR | Zbl

[35] Matomäki K., Radziwiłł M., Tao T., “An averaged form of Chowla's conjecture”, Algebra Number Theory, 9:9 (2015), 2167–2196 | DOI | MR | Zbl

[36] Matomäki, K. and Radziwiłł, M. and Tao, T., Sign patterns of the Liouville and Möbius functions, arXiv: 1509.01545

[37] Mauduit C., Rivat J., “Prime numbers along Rudin-Shapiro sequences”, J. European Math. Soc.(JEMS), 17:10 (2015), 2595–2642 | DOI | MR | Zbl

[38] Mirsky L., “Arithmetical pattern problems relating to divisibility by $r$th powers”, Proc. London Math. Soc., 50 (1949), 497–508 | DOI | MR | Zbl

[39] Peckner R., “Uniqueness of the measure of maximal entropy for the squarefree flow”, Israel J. Mathematics, 210:1 (2015), 335–357 | DOI | MR | Zbl

[40] Pleasants P. A. B., Huck C., “Entropy and diffraction of the $k$-free points in $n$-dimensional lattices”, Discrete Comput. Geom., 50:1 (2013), 39–68 | DOI | MR | Zbl

[41] Rokhlin V. A., “Unitäry rings”, Dokl. Akad. Nauk SSSR (N.S.), 59 (1948), 643–646 | MR | Zbl

[42] Sarnak P., Three Lectures on the Möbius function randomness and dynamics (Lecture 1). http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf

[43] Tao T., The Chowla conjecture and the Sarnak conjecture https://terrytao.wordpress.com/2012/10/14/

[44] Tolev D., “On the distribution of $r$-tuples of squarefree numbers in short intervals”, International J. Number Theory, 2:2 (2006), 225–234 | DOI | MR | Zbl

[45] Tsang K. M., “The distribution of $r$-tuples of squarefree numbers”, Mathematika, 32:2 (1985), 265–275 | DOI | MR | Zbl

[46] Volný D., “Invariance principles and Gaussian approximation for strictly stationary processes”, Trans. Amer. Math. Soc., 351:8 (1999), 3351–3371 | DOI | MR | Zbl

[47] von Neumann J., “Zur operatorenmethode in der klassischen mechanik”, Ann. Math., 33:3 (1932), 587–642 | DOI | MR