Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit theorems.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 733-752
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we construct a new method of probabilistic representation of a solution of initial boundary value problems for series of evolution equations in a circle based on constructing a special continuation of an initial function from the circle to the whole plane.
Keywords:
initial boundary value problems, limit theorems, Feynman integral, Feynman measure.
Mots-clés : evolution equations
Mots-clés : evolution equations
@article{TVP_2016_61_4_a5,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit {theorems.~I}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {733--752},
publisher = {mathdoc},
volume = {61},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a5/}
}
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit theorems.~I JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2016 SP - 733 EP - 752 VL - 61 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a5/ LA - ru ID - TVP_2016_61_4_a5 ER -
%0 Journal Article %A I. A. Ibragimov %A N. V. Smorodina %A M. M. Faddeev %T Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit theorems.~I %J Teoriâ veroâtnostej i ee primeneniâ %D 2016 %P 733-752 %V 61 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a5/ %G ru %F TVP_2016_61_4_a5
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit theorems.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 733-752. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a5/