Initial-boundary value problems in a bounded domain: probabilistic representations of solutions and limit theorems. I
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 733-752 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we construct a new method of probabilistic representation of a solution of initial boundary value problems for series of evolution equations in a circle based on constructing a special continuation of an initial function from the circle to the whole plane.
Keywords: initial boundary value problems, limit theorems, Feynman integral, Feynman measure.
Mots-clés : evolution equations
@article{TVP_2016_61_4_a5,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {Initial-boundary value problems in a~bounded domain: probabilistic representations of solutions and limit {theorems.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {733--752},
     year = {2016},
     volume = {61},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a5/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - Initial-boundary value problems in a bounded domain: probabilistic representations of solutions and limit theorems. I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 733
EP  - 752
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a5/
LA  - ru
ID  - TVP_2016_61_4_a5
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T Initial-boundary value problems in a bounded domain: probabilistic representations of solutions and limit theorems. I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 733-752
%V 61
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a5/
%G ru
%F TVP_2016_61_4_a5
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Initial-boundary value problems in a bounded domain: probabilistic representations of solutions and limit theorems. I. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 733-752. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a5/

[1] Vatanabe C., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986, 448 pp.

[2] Vatson Dzh. N., Teoriya besselevykh funktsii, Izd-vo in. lit-ry, M., 1949

[3] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Nauka, M., 1958, 439 pp.

[4] Doob J. L., “A probabilistic approach to the heat equation”, Trans. Amer. Math. Soc., 80 (1955), 216–280 | DOI | MR | Zbl

[5] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Predelnye teoremy o skhodimosti funktsionalov ot sluchainykh bluzhdanii k resheniyu zadachi Koshi dlya uravneniya $\frac{\partial u}{ \partial t}=\frac{\sigma^2}{2}~\Delta u$ s kompleksnym parametrom $\sigma$”, Zap. nauchn. sem. POMI, 420 (2013), 88–102

[6] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Kompleksnyi analog tsentralnoi predelnoi teoremy i veroyatnostnaya approksimatsiya integrala Feinmana”, Doklady RAN, 459:3 (2014), 400–402 | DOI | Zbl

[7] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968, 396 pp.

[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 736 pp.

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 372 pp.

[10] Pilipenko A., An introduction to stochastic differential equations with reflection, Universitatsverlag, Potsdam, 2014

[11] Smirnov V. I., Kurs vysshei matematiki, chast 2, v. 3, Nauka, M., 1974, 816 pp.

[12] Skorokhod A. V., “Stokhasticheskie uravneniya dlya protsessov diffuzii s granitsami”, Teoriya veroyatn. i ee primen., 6:3 (1961), 287–298

[13] Sato K., Tanaka H., “Local times on the boundary for multi-dimensional reflecting diffusion”, Proc. Japan Acad., 38 (1961), 699–702 | DOI | MR

[14] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, Izd-vo in. lit-ry, M., 1961, 278 pp.

[15] Faddeev D. K., Vulikh B. Z., Uraltseva N. N. i dr., Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, L., 1981, 200 pp.