How many families survive for a long time?
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 709-732 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{ Z_{k},k=0,1,\ldots\} $ be a critical branching process in a random environment generated by a sequence of independent and identically distributed random reproduction laws, and let $Z_{p,n}$ be the number of particles at time $p\le n$ having a positive offspring number at time $n$. A theorem is proved describing the limiting behavior, as $n\rightarrow \infty $, of the distribution of a properly scaled process $\log Z_{p,n}$ under the assumptions $Z_{n}>0$ and $p\ll n$.
Keywords: branching processes, random environment, reduced processes, conditional limit theorems.
Mots-clés : Lévy processes
@article{TVP_2016_61_4_a4,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {How many families survive for a long time?},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {709--732},
     year = {2016},
     volume = {61},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a4/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - How many families survive for a long time?
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 709
EP  - 732
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a4/
LA  - ru
ID  - TVP_2016_61_4_a4
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T How many families survive for a long time?
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 709-732
%V 61
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a4/
%G ru
%F TVP_2016_61_4_a4
V. A. Vatutin; E. E. D'yakonova. How many families survive for a long time?. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 709-732. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a4/

[1] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] Afanasyev V. I., Böeinghoff Ch., Kersting G., Vatutin V. A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[3] Borovkov K. A., Vatutin V. A., “Reduced critical branching processes in random environment”, Stoch. Proc. Appl., 71:2 (1997), 225–240 | DOI | MR | Zbl

[4] Chaumont L., “Conditionings and path decompositions for Levy processes”, Stochastic Process. Appl., 64 (1996), 39–54 | DOI | MR | Zbl

[5] Chaumont L., “Excursion normalisee, meandre at pont pour les processus de Levy stables”, Bull. Sci. Math., 121:5 (1997), 377–403 | MR | Zbl

[6] Caravenna F., Chaumont L., “Invariance principles for random walks conditioned to stay positive”, Ann. Inst. H. Poincare, Probab. Statist., 44:1 (2008), 170–190 | DOI | MR | Zbl

[7] Doney R. A., “Local behavior of first passage probabilities”, Probab. Theory Relat. Fields, 152:3 (2012), 559–588 | DOI | MR | Zbl

[8] Feller V., Vvedenie v teoriyu veroyatnoctei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp.

[9] Fleischmann K., Prehn U., “Ein Grenzfersatz für subkritische Verzweigungsprozesse mit eindlich vielen Typen von Teilchen”, Math. Nachr., 64 (1974), 357–362 | DOI | MR | Zbl

[10] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241 | DOI | MR

[11] Fleischmann K., Vatutin V. A., “Reduced subcritical Galton–Watson processes in random environment”, Adv. Appl. Probab., 31:1 (1999), 88–111 | DOI | MR | Zbl

[12] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | DOI | MR | Zbl

[13] Vatutin V. A., “Redutsirovannye vetvyaschiesya protsessy v sluchainoi srede: kriticheskii sluchai”, Teoriya veroyatn. i ee primen., 47:1 (2002), 21–38 | DOI

[14] Vatutin V. A., Dyakonova E. E., “Reduced branching processes in random environment”, Mathematics and Computer Science, v. II, Algorithms, Trees, Combinatorics and Probabilities, ed. B. Chauvin, et al., Birkhäuser, Basel, 2002, 455–467 | MR | Zbl

[15] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede, I: predelnye teoremy”, Teoriya veroyatn. i ee primen., 48:2 (2003), 274–300 | DOI | Zbl

[16] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede, II: konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primen., 49:2 (2004), 231–268 | DOI | Zbl

[17] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatn. i ee primen., 51:1 (2006), 22–46 | DOI

[18] Vatutin V. A., Dyakonova E. E., “Volny v redutsirovannykh vetvyaschikhsya protsessakh v sluchainoi srede”, Teoriya veroyatn. i ee primen., 53:4 (2008), 665–683 | DOI

[19] Vatutin V. A., Dyakonova E. E., Path to survival for the critical branching proceses in random environment, 2016, arXiv: 1603.03199

[20] Vatutin V. A., Dyakonova E. E., Sagitov S., “Evolyutsiya vetvyaschikhsya protsessov v sluchainoi srede”, Trudy matem. in-ta im. V. A. Steklova, 282, 2013, 231–256 | Zbl

[21] Vatutin V. A., Wachtel V., “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1–2 (2009), 177–217 | DOI | MR | Zbl

[22] Zolotarev V. M., “Preobrazovaniya Mellina–Stiltesa v teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 2:4 (1957), 444–469

[23] Zubkov A. M., “Predelnye raspredeleniya rasstoyaniya do blizhaishego obschego predka”, Teoriya veroyatn. i ee primen., 20:3 (1975), 614–623 | Zbl