Conditional central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 686-708 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The arrays with rows consisting of conditionally independent random variables with respect to certain $\sigma$-algebras are studied. An analogue of the Lindeberg–Feller theorem known for systems of independent random variables is established. This result is based on the theorem proved by Yuan, Wei, and Lei in [J. Korean Math. Soc., 51 (2014), pp. 1–15], where the authors considered a sequence of random variables conditionally independent with respect to a given $\sigma$-algebra. They were interested in a.s. convergence, whereas our version of the Lindeberg condition in a weak form (involving convergence in probability) is less restrictive. An application of the indicated new result for arrays provides an extension of conditions for asymptotic normality of the estimates of the regression function second moment obtained in a recent paper by Györfi and Walk [J. Mach. Learn. Res., 16 (2015), pp. 1863–1877].
Keywords: conditional independence, conditional characteristic functions, array of random variables, conditional central limit theorem, regression function moments, feature selection.
@article{TVP_2016_61_4_a3,
     author = {A. V. Bulinski},
     title = {Conditional central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {686--708},
     year = {2016},
     volume = {61},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a3/}
}
TY  - JOUR
AU  - A. V. Bulinski
TI  - Conditional central limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 686
EP  - 708
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a3/
LA  - ru
ID  - TVP_2016_61_4_a3
ER  - 
%0 Journal Article
%A A. V. Bulinski
%T Conditional central limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 686-708
%V 61
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a3/
%G ru
%F TVP_2016_61_4_a3
A. V. Bulinski. Conditional central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 686-708. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a3/

[1] Beirlant J., Györfi L., “On the asymptotic normality of the L2-error in partitioning regression estimation”, J. Statist. Plann. Inference, 71:1–2 (1998), 93–107 | DOI | MR | Zbl

[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 353 pp. | MR

[3] Shiryaev A. N., Veroyatnost, 4, MTsNMO, M., 2007, 552 pp.

[4] Yuan D. M., An J., Wu X. S., “Conditional limit theorems for conditionally negatively associated random variables”, Monatsh.Math., 161:4 (2010), 449–473 | DOI | MR | Zbl

[5] Yuan D. M., Yang Y. K., “Conditional versions of limit theorems for conditionally associated random variables”, J. Math. Anal. Appl., 376:1 (2011), 282–293 | DOI | MR | Zbl

[6] Yuan D-M., Wei L-R., Lei L., “Conditional central limit theorems for a sequence of conditional independent random variables”, J. Korean Math. Soc., 51:1 (2014), 1–15 | DOI | MR | Zbl

[7] Bolón-Canedo V., Sánchez-Maroño N., Alonso-Betanzos A., Feature Selection for High-Dimensional Data, Springer, Cham, 2015, 147 pp.

[8] Borkar V. S., Probability Theory. An Advanced Course, Springer, New York, 1995, 138 pp. | MR | Zbl

[9] Bulinski A., Shashkin A., Limit Theorems for Associated Random Fields and Related Systems, World Scientific, Singapore, 2007, 435 pp. | MR

[10] Chow Y. S., Teicher H., Probability Theory. Independence, Interchangeability, Martingales, 3, Springer, New York, 1997, 456 pp. | MR | Zbl

[11] Györfi L., Kohler M., Krzyzak A., Walk H., A Distribution-Free Theory of Nonparametric Regression, Springer, New York, 2002, 646 pp. | Zbl

[12] Györfi L., Walk H., “On the asymptotic normality of an estimate of a regression functional”, J. Mach. Learn. Res., 16 (2015), 1863–1877 | MR | Zbl

[13] Kallenberg O., Foundations of Modern Probability, Springer, New York, 1997, 522 pp. | MR | Zbl

[14] Klemelä J., Multivariate Nonparametric Regression and Visualization: With R and Applications to Finance, Wiley, New Jersey, 2014, 699 pp. | MR | Zbl

[15] Majerek D., Nowak W., Zieba W., “Conditional strong law of large number”, Int. J. Pure Appl. Math., 20:2 (200), 143–157 | MR | Zbl

[16] Ordóñez Cabrera M., Rosalsky A., Volodin A., “Some theorems on conditional mean convergence and conditional almost sure convergence for randomly weighted sums of dependent random variables”, TEST, 21:2 (2012), 369–385 | DOI | MR | Zbl

[17] Petrov V. V., Limit Theorems of Probability Theory. Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995 | MR | Zbl

[18] Prakasa Rao B. L. S., “Conditional independence, conditional mixing and conditional association”, Ann. Inst. Stat. Math., 61 (2009), 441–460 | DOI | MR | Zbl

[19] Roussas G. G., “On conditional independence, mixing, and association”, Stochastic Anal. Appl., 26:6 (2008), 1274–1309 | DOI | MR | Zbl

[20] Shiryaev A. N., Veroyatnost, 4, MTsNMO, M., 2007, 552 pp.

[21] Yuan D. M., An J., Wu X. S., “Conditional limit theorems for conditionally negatively associated random variables”, Monatsh.Math., 161:4 (2010), 449–473 | DOI | MR | Zbl

[22] Yuan D. M., Yang Y. K., “Conditional versions of limit theorems for conditionally associated random variables”, J. Math. Anal. Appl., 376:1 (2011), 282–293 | DOI | MR | Zbl

[23] Yuan D-M., Wei L-R., Lei L., “Conditional central limit theorems for a sequence of conditional independent random variables”, J. Korean Math. Soc., 51:1 (2014), 1–15 | DOI | MR | Zbl