@article{TVP_2016_61_4_a3,
author = {A. V. Bulinski},
title = {Conditional central limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {686--708},
year = {2016},
volume = {61},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a3/}
}
A. V. Bulinski. Conditional central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 4, pp. 686-708. http://geodesic.mathdoc.fr/item/TVP_2016_61_4_a3/
[1] Beirlant J., Györfi L., “On the asymptotic normality of the L2-error in partitioning regression estimation”, J. Statist. Plann. Inference, 71:1–2 (1998), 93–107 | DOI | MR | Zbl
[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 353 pp. | MR
[3] Shiryaev A. N., Veroyatnost, 4, MTsNMO, M., 2007, 552 pp.
[4] Yuan D. M., An J., Wu X. S., “Conditional limit theorems for conditionally negatively associated random variables”, Monatsh.Math., 161:4 (2010), 449–473 | DOI | MR | Zbl
[5] Yuan D. M., Yang Y. K., “Conditional versions of limit theorems for conditionally associated random variables”, J. Math. Anal. Appl., 376:1 (2011), 282–293 | DOI | MR | Zbl
[6] Yuan D-M., Wei L-R., Lei L., “Conditional central limit theorems for a sequence of conditional independent random variables”, J. Korean Math. Soc., 51:1 (2014), 1–15 | DOI | MR | Zbl
[7] Bolón-Canedo V., Sánchez-Maroño N., Alonso-Betanzos A., Feature Selection for High-Dimensional Data, Springer, Cham, 2015, 147 pp.
[8] Borkar V. S., Probability Theory. An Advanced Course, Springer, New York, 1995, 138 pp. | MR | Zbl
[9] Bulinski A., Shashkin A., Limit Theorems for Associated Random Fields and Related Systems, World Scientific, Singapore, 2007, 435 pp. | MR
[10] Chow Y. S., Teicher H., Probability Theory. Independence, Interchangeability, Martingales, 3, Springer, New York, 1997, 456 pp. | MR | Zbl
[11] Györfi L., Kohler M., Krzyzak A., Walk H., A Distribution-Free Theory of Nonparametric Regression, Springer, New York, 2002, 646 pp. | Zbl
[12] Györfi L., Walk H., “On the asymptotic normality of an estimate of a regression functional”, J. Mach. Learn. Res., 16 (2015), 1863–1877 | MR | Zbl
[13] Kallenberg O., Foundations of Modern Probability, Springer, New York, 1997, 522 pp. | MR | Zbl
[14] Klemelä J., Multivariate Nonparametric Regression and Visualization: With R and Applications to Finance, Wiley, New Jersey, 2014, 699 pp. | MR | Zbl
[15] Majerek D., Nowak W., Zieba W., “Conditional strong law of large number”, Int. J. Pure Appl. Math., 20:2 (200), 143–157 | MR | Zbl
[16] Ordóñez Cabrera M., Rosalsky A., Volodin A., “Some theorems on conditional mean convergence and conditional almost sure convergence for randomly weighted sums of dependent random variables”, TEST, 21:2 (2012), 369–385 | DOI | MR | Zbl
[17] Petrov V. V., Limit Theorems of Probability Theory. Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995 | MR | Zbl
[18] Prakasa Rao B. L. S., “Conditional independence, conditional mixing and conditional association”, Ann. Inst. Stat. Math., 61 (2009), 441–460 | DOI | MR | Zbl
[19] Roussas G. G., “On conditional independence, mixing, and association”, Stochastic Anal. Appl., 26:6 (2008), 1274–1309 | DOI | MR | Zbl
[20] Shiryaev A. N., Veroyatnost, 4, MTsNMO, M., 2007, 552 pp.
[21] Yuan D. M., An J., Wu X. S., “Conditional limit theorems for conditionally negatively associated random variables”, Monatsh.Math., 161:4 (2010), 449–473 | DOI | MR | Zbl
[22] Yuan D. M., Yang Y. K., “Conditional versions of limit theorems for conditionally associated random variables”, J. Math. Anal. Appl., 376:1 (2011), 282–293 | DOI | MR | Zbl
[23] Yuan D-M., Wei L-R., Lei L., “Conditional central limit theorems for a sequence of conditional independent random variables”, J. Korean Math. Soc., 51:1 (2014), 1–15 | DOI | MR | Zbl